Decussation

Author(s):  
Robert Laureno

This chapter on “Decussation” examines the right–left crossing of neurological systems. Covered are the corticospinal tract, optic chiasm, and other subjects. The presence of crossed neurological systems is basic to clinical neurology. Crossing, however, appears to not be essential, and the amount of crossing can vary from individual to individual. We can track across vertebrate species the evolution of complete chiasmal crossing to the diminished crossing seen in the human visual system. This change in crossing of vision is very understandable as a correlate of the evolution of a lateral-eyed animal to a frontal-eyed human. The origin of crossing cannot be determined with certainty; we can only speculate about how many times crossing developed in pre-vertebrate history or what advantages, if any, crossing conferred. Clinicians, however, must be prepared to recognize patients with uncrossed anatomy—a challenge when we expect systems to be crossed as usual.

Author(s):  
Kuzmych V. ◽  

The article is devoted to the phenomenon of holographic human perception in the analysis of the architectural environment. Includes aspects of perspective-tonal perception of visual factors of holographic scanning of the human visual system. Aimed at understanding and reproducing the features and nuances of vision, in the context of summary analysis and reproduction of the system of energy flows in the elements of visual perception. The holographic factor of perception of reality is based on the difference between the work of the right and left eye, with the peculiarity of the angular adjustment of vision to the object of observation. The horizon line or the height of the perception of volumes, as well as the position of the spaces of the architectural environment remain dominant.


1998 ◽  
Vol 79 (5) ◽  
pp. 2749-2765 ◽  
Author(s):  
L. Cornette ◽  
P. Dupont ◽  
A. Rosier ◽  
S. Sunaert ◽  
P. Van Hecke ◽  
...  

Cornette, L., P. Dupont, A. Rosier, S. Sunaert, P. Van Hecke, J. Michiels, L. Mortelmans, and G. A. Orban. Human brain regions involved in direction discrimination. J. Neurophysiol. 79: 2749–2765, 1998. To obtain further evidence for the functional specialization and task-dependent processing in the human visual system, we used positron emission tomography to compare regional cerebral blood flow in two direction discrimination tasks and four control tasks. The stimulus configuration, which was identical in all tasks, included the motion of a random dot pattern, dimming of a fixation point, and a tone burst. The discrimination tasks comprised the identification of motion direction and successive direction discrimination. The control tasks were motion detection, dimming detection, tone detection, and passive viewing. There was little difference in the activation patterns evoked by the three detection tasks except for decreased activity in the parietal cortex during the detection of a tone. Thus attention to a nonvisual stimulus modulated different visual cortical regions nonuniformly. Comparison of successive discrimination with motion detection yielded significant activation in the right fusiform gyrus, right lingual gyrus, right frontal operculum, left inferior frontal gyrus, and right thalamus. The fusiform and opercular activation sites persisted even after subtracting direction identification from successive discrimination, indicating their involvement in temporal comparison. Functional magnetic resonance imaging (fMRI) experiments confirmed the weak nature of the activation of human MT/V5 by successive direction discrimination but also indicated the involvement of an inferior satellite of human MT/V5. The fMRI experiments moreover confirmed the involvement of human V3A, lingual, and parietal regions in successive discrimination. Our results provide further evidence for the functional specialization of the human visual system because the cortical regions involved in direction discrimination partially differ from those involved in orientation discrimination. They also support the principle of task-dependent visual processing and indicate that the right fusiform gyrus participates in temporal comparison, irrespective of the stimulus attribute.


2020 ◽  
Vol 2020 (1) ◽  
pp. 60-64
Author(s):  
Altynay Kadyrova ◽  
Majid Ansari-Asl ◽  
Eva Maria Valero Benito

Colour is one of the most important appearance attributes in a variety of fields including both science and industry. The focus of this work is on cosmetics field and specifically on the performance of the human visual system on the selection of foundation makeup colour that best matches with the human skin colour. In many cases, colour evaluations tend to be subjective and vary from person to person thereby producing challenging problems to quantify colour for objective evaluations and measurements. Although many researches have been done on colour quantification in last few decades, to the best of our knowledge, this is the first study to evaluate objectively a consumer's visual system in skin colour matching through a psychophysical experiment under different illuminations exploiting spectral measurements. In this paper, the experiment setup is discussed and the results from the experiment are presented. The correlation between observers' skin colour evaluations by using PANTONE Skin Tone Guide samples and spectroradiometer is assessed. Moreover, inter and intra observer variability are considered and commented. The results reveal differences between nine ethnic groups, between two genders, and between the measurements under two illuminants (i.e.D65 and F (fluorescent)). The results further show that skin colour assessment was done better under D65 than under F illuminant. The human visual system was three times worse than instrument in colour matching in terms of colour difference between skin and PANTONE Skin Tone Guide samples. The observers tend to choose lighter, less reddish, and consequently paler colours as the best match to their skin colour. These results have practical applications. They can be used to design, for example, an application for foundation colour selection based on correlation between colour measurements and human visual system based subjective evaluations.


2012 ◽  
Vol 58 (2) ◽  
pp. 147-152
Author(s):  
Michal Mardiak ◽  
Jaroslav Polec

Objective Video Quality Method Based on Mutual Information and Human Visual SystemIn this paper we present the objective video quality metric based on mutual information and Human Visual System. The calculation of proposed metric consists of two stages. In the first stage of quality evaluation whole original and test sequence are pre-processed by the Human Visual System. In the second stage we calculate mutual information which has been utilized as the quality evaluation criteria. The mutual information was calculated between the frame from original sequence and the corresponding frame from test sequence. For this testing purpose we choose Foreman video at CIF resolution. To prove reliability of our metric were compared it with some commonly used objective methods for measuring the video quality. The results show that presented objective video quality metric based on mutual information and Human Visual System provides relevant results in comparison with results of other objective methods so it is suitable candidate for measuring the video quality.


Author(s):  
Wen-Han Zhu ◽  
Wei Sun ◽  
Xiong-Kuo Min ◽  
Guang-Tao Zhai ◽  
Xiao-Kang Yang

AbstractObjective image quality assessment (IQA) plays an important role in various visual communication systems, which can automatically and efficiently predict the perceived quality of images. The human eye is the ultimate evaluator for visual experience, thus the modeling of human visual system (HVS) is a core issue for objective IQA and visual experience optimization. The traditional model based on black box fitting has low interpretability and it is difficult to guide the experience optimization effectively, while the model based on physiological simulation is hard to integrate into practical visual communication services due to its high computational complexity. For bridging the gap between signal distortion and visual experience, in this paper, we propose a novel perceptual no-reference (NR) IQA algorithm based on structural computational modeling of HVS. According to the mechanism of the human brain, we divide the visual signal processing into a low-level visual layer, a middle-level visual layer and a high-level visual layer, which conduct pixel information processing, primitive information processing and global image information processing, respectively. The natural scene statistics (NSS) based features, deep features and free-energy based features are extracted from these three layers. The support vector regression (SVR) is employed to aggregate features to the final quality prediction. Extensive experimental comparisons on three widely used benchmark IQA databases (LIVE, CSIQ and TID2013) demonstrate that our proposed metric is highly competitive with or outperforms the state-of-the-art NR IQA measures.


Sign in / Sign up

Export Citation Format

Share Document