Anesthetic Management for Patients With Left Ventricular Assist Devices Undergoing Noncardiac Surgery

Author(s):  
Amanda M. Kleiman ◽  
Christopher Spencer ◽  
Julie L. Huffmyer

The incidence and prevalence of chronic heart failure is increasing in the United States, and end-stage heart failure is associated with high mortality. While medical management is often the first-line treatment of heart failure, mechanical circulatory support and ventricular assist device therapies are being increasingly employed to improve symptoms and end-organ dysfunction from heart failure. Patients with left ventricular assist devices (LVADs) are not only surviving with their disease, but also thriving as a result of LVAD support, and many return to normal activities of daily life. Thus, these patients present to hospitals for noncardiac surgeries, both elective and urgent, with increasing frequency. This chapter explores some commonly used ventricular assist devices, the altered physiology that accompanies LVAD therapy with continuous flow devices, as well as some of the anesthetic considerations that are vital for patients presenting for both elective and urgent surgeries.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Jens Garbade ◽  
Hartmuth B. Bittner ◽  
Markus J. Barten ◽  
Friedrich-Wilhelm Mohr

The shortage of appropriate donor organs and the expanding pool of patients waiting for heart transplantation have led to growing interest in alternative strategies, particularly in mechanical circulatory support. Improved results and the increased applicability and durability with left ventricular assist devices (LVADs) have enhanced this treatment option available for end-stage heart failure patients. Moreover, outcome with newer pumps have evolved to destination therapy for such patients. Currently, results using nonpulsatile continuous flow pumps document the evolution in outcomes following destination therapy achieved subsequent to the landmark Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure Trial (REMATCH), as well as the outcome of pulsatile designed second-generation LVADs. This review describes the currently available types of LVADs, their clinical use and outcomes, and focuses on the patient selection process.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 861
Author(s):  
Gennaro Martucci ◽  
Federico Pappalardo ◽  
Harikesh Subramanian ◽  
Giulia Ingoglia ◽  
Elena Conoscenti ◽  
...  

Heart failure (HF) remains a leading cause of morbidity, hospitalization, and mortality worldwide. Advancement of mechanical circulatory support technology has led to the use of continuous-flow left ventricular assist devices (LVADs), reducing hospitalizations, and improving quality of life and outcomes in advanced HF. Recent studies have highlighted how metabolic and endocrine dysfunction may be a consequence of, or associated with, HF, and may represent a novel (still neglected) therapeutic target in the treatment of HF. On the other hand, it is not clear whether LVAD support, may impact the outcome by also improving organ perfusion as well as improving the neuro-hormonal state of the patients, reducing the endocrine dysfunction. Moreover, endocrine function is likely a major determinant of human homeostasis, and is a key issue in the recovery from critical illness. Care of the endocrine function may contribute to improving cardiac contractility, immune function, as well as infection control, and rehabilitation during and after a LVAD placement. In this review, data on endocrine challenges in patients carrying an LVAD are gathered to highlight pathophysiological states relevant to this setting of patients, and to summarize the current therapeutic suggestions in the treatment of thyroid dysfunction, and vitamin D, erythropoietin and testosterone administration.


2021 ◽  
Vol 32 (4) ◽  
pp. 424-433
Author(s):  
Emalie Petersen

Heart failure is a leading cause of morbidity and mortality in the United States. Treatment of this condition increasingly involves mechanical circulatory support devices. Even with optimal medical therapy and use of simple cardiac devices, heart failure often leads to reduced quality of life and a shortened life span, prompting exploration of more advanced treatment approaches. Left ventricular assist devices constitute an effective alternative to cardiac transplantation. These devices are not without complications, however, and their use requires careful cooperative management by the patient’s cardiology team and primary care provider. Left ventricular assist devices have undergone many technological advancements since they were first introduced, and they will continue to evolve. This article reviews the history of different types of left ventricular assist devices, appropriate patient selection, and common complications in order to increase health professionals’ familiarity with these treatment options.


Author(s):  
Sung-Min Cho ◽  
J. Hunter Mehaffey ◽  
Susan L. Myers ◽  
Ryan S. Cantor ◽  
Randall C. Starling ◽  
...  

Background: Ischemic and hemorrhagic cerebrovascular accidents (ICVA and HCVA, respectively) remain common among patients with centrifugal-flow left ventricular assist devices (CF-LVADs), despite improvements in survival and device longevity. Therefore, the incidence of neurological adverse events (NAEs) associated with two contemporary CF-LVADs, the Abbott HeartMate3 ® (HM3) and the Medtronic HeartWare ™ HVAD ® (HVAD), were compared. Methods: Using the Society of Thoracic Surgeons Interagency Registry for Mechanically Assisted Circulatory Support (Intermacs), we collected data on adult patients who received a CF-LVAD as a primary isolated implant between 1/1/2017 and 9/30/2019. Major NAEs were defined as transient ischemic attack (TIA), ICVA, and HCVA. The association of HVAD with risk of NAE in the first year post implant was evaluated using propensity score matching to balance for pre-implant risk factors. After matching, freedom from first major NAE in the HM3 and HVAD cohorts was compared with Kaplan-Meier curves. A secondary analysis using multivariable multiphase hazard models was used to identify predictors of NAE, which uses a data driven parametric fit of the early declining and constant phase hazards and the associations of risk factor with either phase. Results: Of 6,205 included patients, 3,076 (49.6%) received the HM3 and 3,129 (50.4%) received the HVAD. Median follow-up was 9 and 12 months (HM3 and HVAD). HVAD patients had more major NAEs (16.4% vs. 6.4%, p <0.001), as well as each subtype (TIA: 3.3% vs. 1.0%, p <0.001; ICVA: 7.7% vs. 3.4%, p <0.001; and HCVA: 7.2% vs. 2.0%, p <0.001), than did HM3 patients. A propensity-matched cohort balanced for pre-implant risk factors showed that HVAD was associated with higher probabilities of major NAEs (% freedom from NAE: 82% vs. 92%, p <0.001). Device type was not significantly associated with NAEs in the early hazard phase, but HVAD was associated with higher incidence of major NAEs during the constant hazard phase (hazard ratio: 5.71, confidence interval: 3.90-8.36). Conclusions: HM3 is associated with lower hazard of major NAEs than is HVAD beyond the early post-implantation period and during the constant hazard phase. Defining the explanation for this observation will inform device selection for individual patients.


Sign in / Sign up

Export Citation Format

Share Document