Pulmonary hypertension

Author(s):  
Michel Slama ◽  
Julien Maizel

Acute pulmonary hypertension (PH) is common in ICU patients, particularly in septic shock, acute respiratory distress syndrome (ARDS), pulmonary embolism, and cardiac heart failure. Although many patients with lung diseases develop chronic PH, primary pulmonary arterial hypertension is less frequent, but still can be observed in ICU patients. Pulmonary arterial pressure (PAP) can be assessed using continuous-wave Doppler with the help of colour Doppler. Tricuspid regurgitation can be recorded with systolic as well as mean PAP estimated respectively from maximal and mean velocity of flow. Excellent correlations with invasive methods were found despite PAP increasing with age, body mass, and arterial hypertension. Pulmonary regurgitation is useful to estimate diastolic, mean, and systolic PAP. The right ventricular outflow tract flow can be used to rule out or rule in PH. Also, isovolumic contraction time on tissue Doppler imaging (TDI) tricuspid annular velocities allows prediction of systolic PAP (sPAP). Chronic and acute PH are usually associated with dilation of the right ventricle, atrium, and inferior vena cava as well as paradoxical septal movement. Right ventricular hypertrophy, right ventricular systolic function, and the size of the left ventricle can help to differentiate chronic from acute PH.

2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
M Suzuki ◽  
Y Tanaka ◽  
K Yamashita ◽  
A Shono ◽  
K Sumimoto ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background The haemodynamic effect of atrial septal defect (ASD) is a chronic volume overload of the right heart and pulmonary vasculature. Pulmonary overcirculation is generally compensated for by the right ventricular (RV) and pulmonary arterial (PA) reserve. However, in a subset of patients, prolonged pulmonary overcirculation insidiously induces obstructive pulmonary vasculopathy, which results in postoperative residual pulmonary arterial hypertension (PAH) after ASD closure. Postoperative PAH is a major concern because it is closely associated with poor outcomes and impaired quality of life. However, to date, no clinically robust predictors of postoperative residual PAH have been clearly identified. Purpose This study sought to assess the haemodynamic characteristics of ASD patients in terms of mechano-energetic parameters and to identify the predictors of postoperative residual PAH in these patients. Methods A total of 120 ASD patients (age: 58 ± 17 years) and 46 normal controls were recruited. As previously reported, the simplified RV contraction pressure index (sRVCPI) was calculated as an index of RV external work by multiplying the tricuspid annular plane systolic excursion (TAPSE) by the pressure gradient between the RV and right atrium. RV- PA coupling was evaluated using TAPSE divided by PA systolic pressure as an index of the RV length-force relationship. These parameters were measured both at baseline and 6 months after ASD closure. Results As expected, baseline sRVCPI was significantly greater in patients with ASD than in controls (775 ± 298 vs. 335 ± 180 mm Hg • mm, P < 0.01), which indicated significant "RV overwork". As a result, RV-PA coupling in ASD patients was significantly impaired compared to that in controls (0.9 ± 0.8 vs. 3.5 ± 1.7 mm/mm Hg, P < 0.01). All 120 ASD patients underwent transcatheter or surgical shunt closure; 15 of them had residual PAH after closure. After 6 months, RV-PA coupling index significantly improved in patients without residual PAH, from 0.96 ± 0.81 to 1.27 ± 1.24 mm/mm Hg (P = 0.02). Furthermore, RV load was markedly reduced, with sRVCPI falling from 691 ± 258 to 434 ± 217 mm Hg • mm, P < 0.01). However, in patients with residual PAH, RV-PA coupling index deteriorated from 0.64 ± 0.23 to 0.53 ± 0.12 mm/mm Hg (P < 0.01). As a result, RV overload was not significantly relieved (sRVCPI; from 971 ± 382 to 783 ± 166 mm Hg • mm, P = 0.22). In a multivariate analysis, baseline pulmonary vascular resistance (hazard ratio 1.009; P < 0.01) and preoperative sRVPCI (hazard ratio 1.003; P < 0.01) revealed to be independent predictors of residual PAH. Conclusion In terms of mechano-energetic function, preoperative "RV overwork" can be used as a robust predictor of an impaired RV-PA relationship in ASD patients. Moreover, periodic assessment of sRVPCI may contribute to the better management for patients with unrepaired ASD. Abstract Figure.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yijia Xiang ◽  
Changhong Cai ◽  
Yonghui Wu ◽  
Lebing Yang ◽  
Shiyong Ye ◽  
...  

Background. Pulmonary artery remodeling is important in the development of pulmonary artery hypertension. The TGF-β1/Smads signaling pathway is activated in pulmonary arterial hypertension (PAH) in rats. Icariin (ICA) suppresses the TGF-β1/Smad2 pathway in myocardial fibrosis in rats. Therefore, we investigated the role of icariin in PAH by inhibiting the TGF-β1/Smads pathway. Methods. Rats were randomly divided into control, monocrotaline (MCT), MCT + ICA-low, and MCT + ICA-high groups. MCT (60 mg/kg) was subcutaneously injected to induce PAH, and icariin (50 or 100 mg/kg.d) was orally administered for 2 weeks. At the end of the fourth week, right ventricular systolic pressure (RVSP) was obtained and the right ventricular hypertrophy index (RI) was determined as the ratio of the right ventricular weight to the left ventricular plus septal weight (RV/LV + S). Western blots were used to determine the expression of TGF-β1, Smad2/3, P-Smad2/3, and matrix metalloproteinase-2 (MMP2) in lung tissues. Results. Compared to the control group, RVSP and RI were increased in the MCT group (ρ < 0.05). Additionally, TGF-β1, Smad2/3, P-Smad2/3, and MMP2 expressions were obviously increased (ρ < 0.01). Compared to the MCT group, RVSP and RI were decreased in the MCT + ICA group (ρ < 0.05). TGF-β1, Smad2/3, P-Smad2/3, and MMP2 expressions were also inhibited in the icariin treatment groups (ρ < 0.05). Conclusions. Icariin may suppress MCT-induced PAH via the inhibition of the TGFβ1-Smad2/3 pathway.


1991 ◽  
Vol 70 (2) ◽  
pp. 859-868 ◽  
Author(s):  
B. D. Zuckerman ◽  
E. C. Orton ◽  
K. R. Stenmark ◽  
J. A. Trapp ◽  
J. R. Murphy ◽  
...  

We compared main pulmonary arterial elasticity and global pulmonary arterial compliance in control and high-altitude (HA) calves to determine whether 1) changes in pulmonary arterial elasticity are contributing to an increase in the oscillatory load of the right ventricle in this model of pulmonary hypertension and 2) measured changes in stiffness of the HA calves' arterial wall are the result of both an increase in pressure and an alteration of the material properties of the HA calves' arterial wall. Newborn calves were placed at 4,300 m simulated altitude for 14 days, and control calves were kept at 1,500 m. The HA calves were then reacclimatized to 1,500 m for 24 h so that baseline pressures of the two groups were similar. Open-chest main pulmonary arterial and right ventricular micromanometric pressures, ultrasonic main pulmonary arterial diameter, and green dye flow were measured under baseline conditions and then under moderate and severely hypoxic conditions to make measurements at both baseline and increased pulmonary pressures. At elevated pressures, the pressure-diameter relationship was noted to be nonlinear, and a characteristic late systolic peaking of the right ventricular pressure waveform was seen. The Peterson pressure-strain modulus, pulse wave velocity, characteristic impedance, and global compliance (3 element windkessel) were calculated. The calculated variables were all shown to be pressure dependent, and no intrinsic differences in stiffness were seen between the control and HA animals when mean pressure was taken into account. Pulmonary arterial histology demonstrated, however, a characteristic increase in wall thickness in the HA animals. Thus, in this model of pulmonary hypertension, major changes in elasticity and pulsatile load are primarily due to an increase in pulmonary pressure. The structural changes present in the HA calves' arterial wall did not separately produce any measurable changes in arterial distensibility or the oscillatory load.


1995 ◽  
Vol 5 (3) ◽  
pp. 278-281 ◽  
Author(s):  
Gül Sagin Saylam ◽  
Jane Somerville

SummaryWe present a patient with primary pulmonary hypertension who had unusually high pulmonary arterial pressure prior to double-lung transplantation. Obstruction of the right ventricular outflow tract developed after transplantation and progressed over the subsequent two years.


Author(s):  
Jessie van Wezenbeek ◽  
Azar Kianzad ◽  
Arno van de Bovenkamp ◽  
Jeroen Wessels ◽  
Sophia A. Mouratoglou ◽  
...  

Background: Heart failure with preserved ejection fraction (HFpEF) is a prevalent disorder for which no effective treatment yet exists. Pulmonary hypertension (PH) and right atrial (RA) and ventricular (RV) dysfunction are frequently observed. The question remains whether the PH with the associated RV/RA dysfunction in HFpEF are markers of disease severity. Methods: To obtain insight in the relative importance of pressure-overload and left-to-right interaction, we compared RA and RV function in 3 groups: 1. HFpEF (n=13); 2. HFpEF-PH (n=33), and; 3. pulmonary arterial hypertension (PAH) matched to pulmonary artery pressures of HFpEF-PH (PH limited to mPAP ≥30 and ≤50 mmHg) (n=47). Patients underwent right heart catheterization and cardiac magnetic resonance imaging. Results: The right ventricle in HFpEF-PH was less dilated and hypertrophied than in PAH. In addition, RV ejection fraction was more preserved (HFpEF-PH: 52±11 versus PAH: 36±12%). RV filling patterns differed: vena cava backflow during RA contraction was observed in PAH only. In HFpEF-PH, RA pressure was elevated throughout the cardiac cycle (HFpEF-PH: 10 [8–14] versus PAH: 7 [5–10] mm Hg), while RA volume was smaller, reflecting excessive RA stiffness (HFpEF-PH: 0.14 [0.10–0.17] versus PAH: 0.08 [0.06–0.11] mm Hg/mL). RA stiffness was associated with an increased eccentricity index (HFpEF-PH: 1.3±0.2 versus PAH: 1.2±0.1) and interatrial pressure gradient (9 [5 to 12] versus 2 [−2 to 5] mm Hg). Conclusions: RV/RA function was less compromised in HFpEF-PH than in PAH, despite similar pressure-overload. Increased RA pressure and stiffness in HFpEF-PH were explained by left atrial/RA-interaction. Therefore, our results indicate that increased RA pressure is not a sign of overt RV failure but rather a reflection of HFpEF-severity.


Sign in / Sign up

Export Citation Format

Share Document