Lysosomal Storage Disorders

Author(s):  
Gustavo H. B. Maegawa

The lysosomal storage disorders (LSDs) are a group of inborn organelle disorders, clinically heterogeneous, and biochemically characterized by accumulation of nondegraded macromolecules primarily in the lysosomal and other cellular compartments. Given the common and essential cellular function of the lysosomal system in different organs and systems, patients afflicted with these disorders present a broad range of clinical problems, including neurological problems, visceromegaly, and skeletal deformities. Onset of symptoms may range from fetal period to adulthood. The neurological problems include developmental delay, seizures, acroparesthesia, motor weakness, muscle wasting, behavioral/psychiatric disturbances, cerebrovascular ischemic events, and extrapyramidal signs. Patients may present with symptoms later that include psychiatric manifestations, are slowly progressive, and may precede other neurologic or systemic features. Most of LSDs are autosomal recessive; however, a few are X-linked with symptpmatic female carriers (e.g., Fabry disease). In most of them, the diagnosis is established by biochemical and/or molecular assays. In terms of management, disease-modifying therapies include enzyme replacement, hematopoietic stem cell transplantation, and substrate reduction therapy. Patients and their families require genetic counseling regarding reproductive risks, disease prognosis, and therapeutic options. Investigations of disease molecular mechanisms provide insights into potential targets for the development of therapeutic strategies. Supportive care has been the key and essential for most LSDs, resulting in substantial improvement in quality of life of patients and families.

2010 ◽  
Vol 38 (6) ◽  
pp. 1465-1468 ◽  
Author(s):  
Robin Lachmann

There are over 70 human diseases that are caused by defects in various aspects of lysosomal function. Until 20 years ago, the only specific therapy available for lysosomal storage disorders was allogeneic haemopoietic stem cell transplantation. Over the last two decades, there has been remarkable progress and there are now licensed treatments for seven of these diseases. In some cases, a choice of agents is available. For selected enzyme-deficiency disordes, ERT (enzyme-replacement therapy) has proved to be highly effective. In other cases, ERT has been less impressive, and it seems that it is not possible to efficiently deliver recombinant enzyme to all tissues. These difficulties have led to the development of other small-molecule-based therapies, and a drug for SRT (substrate-reduction therapy) is now licensed and potential chaperone molecules for ERT are in the late stages of clinical development. Nonetheless, there is still significant unmet clinical need, particularly when it comes to treating LSDs which affect the brain. LSDs have led the way in the development of treatment for genetic disorders, and it seems likely that there will be further therapeutic innovations in the future.


2020 ◽  
Vol 26 (40) ◽  
pp. 5110-5118
Author(s):  
Jayesh Sheth ◽  
Aadhira Nair

: Lysosomal storage disorders comprise a group of approximately 70 types of inherited diseases resulting due to lysosomal gene defects. The outcome of the defect is a deficiency in either of the three: namely, lysosomal enzymes, activator protein, or transmembrane protein, as a result of which there is an unwanted accumulation of biomolecules inside the lysosomes. The pathophysiology of these conditions is complex affecting several organ systems and nervous system involvement in a majority of cases. Several research studies have well elucidated the mechanism underlying the disease condition leading to the development in devising the treatment strategies for the same. Currently, these approaches aim to reduce the severity of symptoms or delay the disease progression but do not provide a complete cure. The main treatment methods include Enzyme replacement therapy, Bone marrow transplantation, Substrate reduction therapy, use of molecular chaperones, and Gene therapy. This review article presents an elaborate description of these strategies and discusses the ongoing studies for the same.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Atul Mehta ◽  
Uma Ramaswami ◽  
Joseph Muenzer ◽  
Roberto Giugliani ◽  
Kurt Ullrich ◽  
...  

Abstract Background Lysosomal storage disorders (LSDs) are rare genetic disorders, with heterogeneous clinical manifestations and severity. Treatment options, such as enzyme replacement therapy (ERT), substrate replacement therapy, and pharmacological chaperone therapy, are available for several LSDs, including Gaucher disease (GD), Fabry disease (FD), and Hunter syndrome (mucopolysaccharidosis type II [MPS II]). However, patients in some countries face challenges accessing treatments owing to limited availability of locally licensed, approved drugs. Methods The Takeda LSD Charitable access program aims to meet the needs of individuals with GD, FD or MPS II with the greatest overall likelihood of benefit, in selected countries, through donation of ERT to nonprofit organizations, and support for medical capacity-building as well as family support via independent grants. Long-term aims of the program are to establish sustainable healthcare services delivered by local healthcare providers for patients with rare metabolic diseases. Patients receiving treatment through the program are monitored regularly, and their clinical data and progress are reviewed annually by an independent medical expert committee (MEC). The MEC also selects patients for enrollment completely independent from the sponsoring company. Results As of 31 August, 2019, 199 patients from 13 countries were enrolled in the program; 142 with GD, 41 with MPS II, and 16 with FD. Physicians reported improvements in clinical condition for 147 (95%) of 155 patients with follow-up data at 1 year. Conclusions The response rate for follow-up data at 1 year was high, with data collected for > 90% of patients who received ERT through the program showing clinical improvements in the majority of patients. These findings suggest that the program can benefit selected patients previously unable to access disease-specific treatments. Further innovative solutions and efforts are needed to address the challenges and unmet needs of patients with LSDs and other rare diseases around the world.


2003 ◽  
Vol 358 (1433) ◽  
pp. 927-945 ◽  
Author(s):  
Terry D. Butters ◽  
Howard R. Mellor ◽  
Keishi Narita ◽  
Raymond A. Dwek ◽  
Frances M. Platt

Glycosphingolipid (GSL) lysosomal storage disorders are a small but challenging group of human diseases to treat. Although these disorders appear to be monogenic in origin, where the catalytic activity of enzymes in GSL catabolism is impaired, the clinical presentation and severity of disease are heterogeneous. Present attitudes to treatment demand individual therapeutics designed to match the specific disease–related gene defect; this is an acceptable approach for those diseases with high frequency, but it lacks viability for extremely rare conditions. An alternative therapeutic approach termed ‘substrate deprivation’ or ‘substrate reduction therapy’ (SRT) aims to balance cellular GSL biosynthesis with the impairment in catalytic activity seen in lysosomal storage disorders. The development of N–alkylated iminosugars that have inhibitory activity against the first enzyme in the pathway for glucosylating sphingolipid in eukaryotic cells, ceramide–specific glucosyltransferase, offers a generic therapeutic for the treatment of all glucosphingolipidoses. The successful use of N–alkylated iminosugars to establish SRT as an alternative therapeutic strategy has been demonstrated in in vitro , in vivo and in clinical trials for type 1 Gaucher disease. The implications of these studies and the prospects of improvement to the design of iminosugar compounds for treating Gaucher and other GSL lysosomal storage disorders will be discussed.


2000 ◽  
Vol 46 (9) ◽  
pp. 1318-1325 ◽  
Author(s):  
Kandiah Umapathysivam ◽  
Alison M Whittle ◽  
Enzo Ranieri ◽  
Colleen Bindloss ◽  
Elaine M Ravenscroft ◽  
...  

Abstract Background: In recent years, there have been significant advances in the development of enzyme replacement and other therapies for lysosomal storage disorders (LSDs). Early diagnosis, before the onset of irreversible pathology, has been demonstrated to be critical for maximum efficacy of current and proposed therapies. In the absence of a family history, the presymptomatic detection of these disorders ideally can be achieved through a newborn screening program. One approach to the development of such a program is the identification of suitable screening markers. In this study, the acid α-glucosidase protein was evaluated as a marker protein for Pompe disease and potentially for other LSDs. Methods: Two sensitive immunoquantification assays for the measurement of total (precursor and mature) and mature forms of acid α-glucosidase protein were used to determine the concentrations in plasma and dried blood spots from control and LSD-affected individuals. Results: In the majority of LSDs, no significant increases above control values were observed. However, individuals with Pompe disease showed a marked decrease in acid α-glucosidase protein in both plasma and whole blood compared with unaffected controls. For plasma samples, this assay gave a sensitivity of 95% with a specificity of 100%. For blood spot samples, the sensitivity was 82% with a specificity of 100%. Conclusions: This study demonstrates that it is possible to screen for Pompe disease by screening the concentration of total acid α-glucosidase in plasma or dried blood spots.


Sign in / Sign up

Export Citation Format

Share Document