substrate reduction
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 48)

H-INDEX

35
(FIVE YEARS 5)

2021 ◽  
Vol 29 ◽  
pp. 100798
Author(s):  
Nathaniel Kleytman ◽  
Jiapeng Ruan ◽  
Audrey Ruan ◽  
Bailin Zhang ◽  
Vagishwari Murugesan ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0247211
Author(s):  
Margarita M. Ivanova ◽  
Julia Dao ◽  
Neil Kasaci ◽  
Benjamin Adewale ◽  
Shaista Nazari ◽  
...  

Gaucher disease (GD) is caused by deficiency of the lysosomal membrane enzyme glucocerebrosidase (GCase) and the subsequent accumulation of its substrate, glucosylceramide (GC). Mostly missense mutations of the glucocerebrosidase gene (GBA) cause GCase misfolding and inhibition of proper lysosomal trafficking. The accumulated GC leads to lysosomal dysfunction and impairs the autophagy pathway. GD types 2 and 3 (GD2-3), or the neuronopathic forms, affect not only the Central Nervous System (CNS) but also have severe systemic involvement and progressive bone disease. Enzyme replacement therapy (ERT) successfully treats the hematologic manifestations; however, due to the lack of equal distribution of the recombinant enzyme in different organs, it has no direct impact on the nervous system and has minimal effect on bone involvement. Small molecules have the potential for better tissue distribution. Ambroxol (AMB) is a pharmacologic chaperone that partially recovers the mutated GCase activity and crosses the blood-brain barrier. Eliglustat (EGT) works by inhibiting UDP-glucosylceramide synthase, an enzyme that catalyzes GC biosynthesis, reducing GC influx load into the lysosome. Substrate reduction therapy (SRT) using EGT is associated with improvement in GD bone marrow burden score and bone mineral density parallel with the improvement in hematological parameters. We assessed the effects of EGT and AMB on GCase activity and autophagy-lysosomal pathway (ALP) in primary cell lines derived from patients with GD2-3 and compared to cell lines from healthy controls. We found that EGT, same as AMB, enhanced GCase activity in control cells and that an individualized response, that varied with GBA mutations, was observed in cells from patients with GD2-3. EGT and AMB enhanced the formation of lysosomal/late endosomal compartments and improved autophagy, independent of GBA mutations. Both AMB and EGT increased mitochondrial mass and density in GD2-3 fibroblasts, suggesting enhancement of mitochondrial function by activating the mitochondrial membrane potential. These results demonstrate that EGT and AMB, with different molecular mechanisms of action, enhance GCase activity and improve autophagy-lysosome dynamics and mitochondrial functions.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2286
Author(s):  
Yanyan Peng ◽  
Benjamin Liou ◽  
Yi Lin ◽  
Venette Fannin ◽  
Wujuan Zhang ◽  
...  

Substrate reduction therapy (SRT) in clinic adequately manages the visceral manifestations in Gaucher disease (GD) but has no direct effect on brain disease. To understand the molecular basis of SRT in GD treatment, we evaluated the efficacy and underlying mechanism of SRT in an immortalized neuronal cell line derived from a Gba knockout (Gba-/-) mouse model. Gba-/- neurons accumulated substrates, glucosylceramide, and glucosylsphingosine. Reduced cell proliferation was associated with altered lysosomes and autophagy, decreased mitochondrial function, and activation of the mTORC1 pathway. Treatment of the Gba-/- neurons with venglustat analogue GZ452, a central nervous system-accessible SRT, normalized glucosylceramide levels in these neurons and their isolated mitochondria. Enlarged lysosomes were reduced in the treated Gba-/- neurons, accompanied by decreased autophagic vacuoles. GZ452 treatment improved mitochondrial membrane potential and oxygen consumption rate. Furthermore, GZ452 diminished hyperactivity of selected proteins in the mTORC1 pathway and improved cell proliferation of Gba-/- neurons. These findings reinforce the detrimental effects of substrate accumulation on mitochondria, autophagy, and mTOR in neurons. A novel rescuing mechanism of SRT was revealed on the function of mitochondrial and autophagy–lysosomal pathways in GD. These results point to mitochondria and the mTORC1 complex as potential therapeutic targets for treatment of GD.


2021 ◽  
Vol 7 (5) ◽  
pp. e614
Author(s):  
Imran H. Quraishi ◽  
Anna M. Szekely ◽  
Anushree C. Shirali ◽  
Pramod K. Mistry ◽  
Lawrence J. Hirsch

ObjectiveWe evaluated whether substrate reduction therapy with miglustat could alter the course of action myoclonus–renal failure syndrome (AMRF), a rare, progressive myoclonic epilepsy with early mortality caused by scavenger receptor class B member 2 (SCARB2) gene mutations.MethodsWe identified an AMRF patient with a biallelic combination of SCARB2 mutations determined by whole exome sequencing. SCARB2 encodes a protein that traffics β-glucocerebrosidase to the lysosomal membrane. Mutations lead to a complex pattern of glucosylceramide accumulation and neurologic symptoms including progressive action myoclonus, seizures, and ataxia. We then evaluated the effect of inhibiting glucosylceramide synthesis, as is used in Gaucher disease. The patient was treated for 3 years with miglustat after several years of steady worsening.ResultsProgression of myoclonus halted, dysphagia resolved, some skills were reacquired, and seizures remained well controlled.ConclusionsThe response suggests that neurologic symptoms of SCARB2-associated AMRF could be ameliorated, at least partly, by targeting glycosphingolipid metabolism with available medications.


2021 ◽  
pp. 1-16
Author(s):  
M. Gold ◽  
T. Fowles ◽  
J.D. Fernandez-Bayo ◽  
L. Palma Miner ◽  
C. Zurbrügg ◽  
...  

Black soldier fly larvae (BSFL) are widely used in recycling and upcycling of nutrients in agri-food by-products, but low and inconsistent BSFL rearing performance (i.e. larval growth, bioconversion rate, and substrate reduction) has been identified as a key challenge. The aims of this research were two-fold: (1) validate an existing closed rearing system design; and (2) assess whether a microbial inoculum derived from the rearing residue increases rearing performance. In controlled bench-scale experiments, BSFL were reared on tomato pomace (TP) and white wine pomace (WWP), along with food waste as control substrate. The two aims were assessed based on the following response variables: larval mass, substrate reduction, residue properties (i.e. pH, temperature, moisture content), and larval intestinal and residue microbiota. Higher BSFL mass (by 5.1 mg dry mass) at harvest on WWP and substrate reduction on TP (by 11.7% dry mass) in the closed system compared to the open system confirmed the potential of closed systems for rearing performance improvements of agri-food by-products. The rearing system also affected the residual moisture content and temperature, but only had a small effect on microbiota. Performance improvements by the closed rearing system design may be outweighed by insufficient aeration with pasty substrates and higher operational efforts for aeration and larval separation from the high-moisture residues. In contrast to the rearing system design, addition of the residue-derived microbial inoculum did not result in improved performance, nor did it alter intestinal and residue microbiota. Missing performance improvements could have been due to absent or low numbers of probiotic bacteria. The success of microbial substrate supplementation could be improved by studying effects of larval-associated microbes and developing cultivation methods that selectively amplify the beneficial (yet unknown) members of the microbial community. Our investigations aimed to increase the valorisation of low-value agri-food by-products in BSFL rearing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael C. Babcock ◽  
Christina R. Mikulka ◽  
Bing Wang ◽  
Sanjay Chandriani ◽  
Sundeep Chandra ◽  
...  

AbstractKrabbe disease (KD) and metachromatic leukodystrophy (MLD) are caused by accumulation of the glycolipids galactosylceramide (GalCer) and sulfatide and their toxic metabolites psychosine and lysosulfatide, respectively. We discovered a potent and selective small molecule inhibitor (S202) of ceramide galactosyltransferase (CGT), the key enzyme for GalCer biosynthesis, and characterized its use as substrate reduction therapy (SRT). Treating a KD mouse model with S202 dose-dependently reduced GalCer and psychosine in the central (CNS) and peripheral (PNS) nervous systems and significantly increased lifespan. Similarly, treating an MLD mouse model decreased sulfatides and lysosulfatide levels. Interestingly, lower doses of S202 partially inhibited CGT and selectively reduced synthesis of non-hydroxylated forms of GalCer and sulfatide, which appear to be the primary source of psychosine and lysosulfatide. Higher doses of S202 more completely inhibited CGT and reduced the levels of both non-hydroxylated and hydroxylated forms of GalCer and sulfatide. Despite the significant benefits observed in murine models of KD and MLD, chronic CGT inhibition negatively impacted both the CNS and PNS of wild-type mice. Therefore, further studies are necessary to elucidate the full therapeutic potential of CGT inhibition.


2021 ◽  
Author(s):  
Alyah Chmiel ◽  
Oliver P. Williams ◽  
Colleen Chernowsky ◽  
Charles Yeung ◽  
Zachary Wickens

We describe a photocatalytic system that elicits potent photoreductant activity from conventional photocatalysts by leveraging radical anion intermediates generated <i>in situ</i>. The combination of isophthalonitrile and sodium formate promotes diverse aryl radical coupling reactions from abundant but difficult to reduce aryl chloride substrates. Mechanistic studies reveal two parallel pathways for substrate reduction both enabled by a key terminal reductant byproduct, carbon dioxide radical anion.


2021 ◽  
Author(s):  
Alyah Chmiel ◽  
Oliver P. Williams ◽  
Colleen Chernowsky ◽  
Charles Yeung ◽  
Zachary Wickens

We describe a photocatalytic system that elicits potent photoreductant activity from conventional photocatalysts by leveraging radical anion intermediates generated <i>in situ</i>. The combination of isophthalonitrile and sodium formate promotes diverse aryl radical coupling reactions from abundant but difficult to reduce aryl chloride substrates. Mechanistic studies reveal two parallel pathways for substrate reduction both enabled by a key terminal reductant byproduct, carbon dioxide radical anion.


2021 ◽  
Author(s):  
Annie Arguello ◽  
Cathal S. Mahon ◽  
Meredith E.K. Calvert ◽  
Darren Chan ◽  
Jason C. Dugas ◽  
...  

Delivery of biotherapeutics across the blood-brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1499
Author(s):  
Sergiu Pasca ◽  
Ancuta Jurj ◽  
Mihnea Zdrenghea ◽  
Ciprian Tomuleasa

TET2 is a dioxygenase dependent on Fe2+ and a-ketoglutarate which oxidizes 5-methylcytosine (5meC) to 5-hydroxymethylcytosine (5hmeC). TET proteins successively oxidize 5mC to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Among these oxidized methylcytosines, 5fC and 5caC are directly excised by thymine DNA glycosylase (TDG) and ultimately replaced with unmethylated cytosine. Mutations in TET2 have been shown to lead to a hypermethylated state of the genome and to be responsible for the initiation of the oncogenetic process, especially in myeloid and lymphoid malignancies. Nonetheless, this was also shown to be the case in other cancers. In AML, TET2 mutations have been observed to be mutually exclusive with IDH1, IDH2, and WT1 mutations, all of them showing a similar impact on the transcription profile of the affected cell. Because of this, it is possible that TET2/IDH1/2/WT1 mutated AML could be considered as having similar characteristics between each other. Nonetheless, other genes also interact with TET2 and influence its effect, thus making it possible that other signatures exist that would mimic the effect of TET2 mutations. Thus, in this review, we searched the literature for the genes that were observed to interact with TET2 and classified them in the following manner: transcription alteration, miRs, direct interaction, posttranslational changes, and substrate reduction. What we propose in the present review is the potential extension of the TET2/IDH1/2/WT1 entity with the addition of certain expression signatures that would be able to induce a similar phenotype with that induced by TET2 mutations. Nonetheless, we recommend that this approach be taken on a disease by disease basis.


Sign in / Sign up

Export Citation Format

Share Document