scholarly journals Alternative Uses of Hyperbaric Oxygen Therapy in Military Medicine: Current Positions and Future Directions

2021 ◽  
Author(s):  
Adam T Biggs ◽  
Lanny F Littlejohn ◽  
Hugh M Dainer

ABSTRACT Introduction Hyperbaric oxygen therapy (HBOT) is a commonly used treatment for a variety of medical issues, including more than a dozen currently approved uses. However, there are alternative proposed uses that have significant implications among an active duty military or veteran population as treatments for PTSD, mild traumatic brain injury (mTBI), and traumatic brain injury (TBI). These applications have seen a recent groundswell of support from the operator and veteran communities, raising the visibility of using HBOT for alternative applications. The current review will cover the existing evidence regarding alternative uses of HBOT in military medicine and provide several possibilities to explain the potential conflicting evidence from empirical results. Materials and Methods There were no inclusion or exclusion criteria for articles addressing currently approved HBOT uses as covered under the military health system. These references were provided for comparison and illustration as needed. For alternative HBOT uses, the review focuses explicitly upon three alternative uses in PTSD, mTBI, and TBI. The review addresses any piece of case study evidence, observational data, quasi-experimental design, or randomized-controlled trial that explored any or a combination of these issues within an active duty population, a veteran population, or a civilian population. Results The existing medical evidence does not support a consensus viewpoint for these alternative uses of HBOT. Based on the literature review, there are four competing positions to explain the lack of consistency among the empirical results. These possibilities are described in no particular order. First, an explanation suggests that the results are because of placebo effects. The combination of participant expectations and subjective symptom reporting creates the potential that reported improvements are because of placebo rather than casual mechanisms. Second, another position suggests that experiments have utilized sham conditions which induced therapeutic benefits. If sham conditions have actually been weakened active treatment conditions, rather than placebo controls, it could explain the lack of observed significant differences in randomized clinical trials. Third, there has been a substantial amount of heterogeneity both in the symptoms treated and the treatments applied. This heterogeneity could explain the inconsistency of the data and the difficulty in reaching a consensus viewpoint. Fourth, the HBOT treatments may actively treat some tangential medical issue the patient is having. The treatment would thus promote an environment of healing without directly treating either PTSD, mTBI, or TBI, and the reduction in orthogonal medical issues facilitates a pathway to recovery by reducing tangential medical problems. Conclusions The mixed empirical evidence does not support recommending HBOT as a primary treatment for PTSD, mTBI, or TBI. If applied under the supervision of a licensed military medical professional, the consistently safe track record of HBOT should allow it to be considered as an alternative treatment for PTSD, mTBI, or TBI once primary treatment methods have failed to produce a benefit. However, the evidence does warrant further clinical investigation with particular emphasis on randomized clinical trials, better placebo controls, and a need to develop a consistent treatment protocol.

Neurosurgery ◽  
2005 ◽  
Vol 57 (6) ◽  
pp. 1244-1253 ◽  
Author(s):  
Adrían V. Hernández ◽  
Ewout W. Steyerberg ◽  
Gillian S. Taylor ◽  
Anthony Marmarou ◽  
J Dik F. Habbema ◽  
...  

2009 ◽  
Vol 26 (5) ◽  
pp. E24 ◽  
Author(s):  
Raymond Choi ◽  
Robert H. Andres ◽  
Gary K. Steinberg ◽  
Raphael Guzman

Increasing evidence in animal models and clinical trials for stroke, hypoxic encephalopathy for children, and traumatic brain injury have shown that mild hypothermia may attenuate ischemic damage and improve neurological outcome. However, it is less clear if mild intraoperative hypothermia during vascular neurosurgical procedures results in improved outcomes for patients. This review examines the scientific evidence behind hypothermia as a treatment and discusses factors that may be important for the use of this adjuvant technique, including cooling temperature, duration of hypothermia, and rate of rewarming.


2012 ◽  
Vol 117 (6) ◽  
pp. 1300-1310 ◽  
Author(s):  
Damien Galanaud ◽  
Vincent Perlbarg ◽  
Rajiv Gupta ◽  
Robert D. Stevens ◽  
Paola Sanchez ◽  
...  

Background Existing methods to predict recovery after severe traumatic brain injury lack accuracy. The aim of this study is to determine the prognostic value of quantitative diffusion tensor imaging (DTI). Methods In a multicenter study, the authors prospectively enrolled 105 patients who remained comatose at least 7 days after traumatic brain injury. Patients underwent brain magnetic resonance imaging, including DTI in 20 preselected white matter tracts. Patients were evaluated at 1 yr with a modified Glasgow Outcome Scale. A composite DTI score was constructed for outcome prognostication on this training database and then validated on an independent database (n=38). DTI score was compared with the International Mission for Prognosis and Analysis of Clinical Trials Score. Results Using the DTI score for prediction of unfavorable outcome on the training database, the area under the receiver operating characteristic curve was 0.84 (95% CI: 0.75-0.91). The DTI score had a sensitivity of 64% and a specificity of 95% for the prediction of unfavorable outcome. On the validation-independent database, the area under the receiver operating characteristic curve was 0.80 (95% CI: 0.54-0.94). On the training database, reclassification methods showed significant improvement of classification accuracy (P < 0.05) compared with the International Mission for Prognosis and Analysis of Clinical Trials score. Similar results were observed on the validation database. Conclusions White matter assessment with quantitative DTI increases the accuracy of long-term outcome prediction compared with the available clinical/radiographic prognostic score.


2018 ◽  
Vol 38 (5) ◽  
pp. 749-754 ◽  
Author(s):  
Olivia Kiwanuka ◽  
Bo-Michael Bellander ◽  
Anders Hånell

When evaluating the design of pre-clinical studies in the field of traumatic brain injury, we found substantial differences compared to phase III clinical trials, which in part may explain the difficulties in translating promising experimental drugs into approved treatments. By using network analysis, we also found cases where a large proportion of the studies evaluating a pre-clinical treatment was performed by inter-related researchers, which is potentially problematic. Subjecting all pre-clinical trials to the rigor of a phase III clinical trial is, however, likely not practically achievable. Instead, we repeat the call for a distinction to be made between exploratory and confirmatory pre-clinical studies.


Sign in / Sign up

Export Citation Format

Share Document