scholarly journals The WAGGS project-III. Discrepant mass-to-light ratios of Galactic globular clusters at high metallicity

2020 ◽  
Vol 492 (3) ◽  
pp. 3859-3871 ◽  
Author(s):  
H Dalgleish ◽  
S Kamann ◽  
C Usher ◽  
H Baumgardt ◽  
N Bastian ◽  
...  

ABSTRACT Observed mass-to-light ratios (M/L) of metal-rich globular clusters (GCs) disagree with theoretical predictions. This discrepancy is of fundamental importance since stellar population models provide the stellar masses that underpin most of extragalactic astronomy, near and far. We have derived radial velocities for 1622 stars located in the centres of 59 Milky Way GCs – 12 of which have no previous kinematic information – using integral-field unit data from the WAGGS project. Using N-body models, we determine dynamical masses and M/LV for the studied clusters. Our sample includes NGC 6528 and NGC 6553, which extend the metallicity range of GCs with measured M/L up to [Fe/H] ∼ −0.1 dex. We find that metal-rich clusters have M/LV more than two times lower than what is predicted by simple stellar population models. This confirms that the discrepant M/L–[Fe/H] relation remains a serious concern. We explore how our findings relate to previous observations, and the potential causes for the divergence, which we conclude is most likely due to dynamical effects.

2019 ◽  
Vol 14 (S351) ◽  
pp. 108-111
Author(s):  
Katja Fahrion ◽  
Mariya Lyubenova ◽  
Glenn van de Ven ◽  
Michael Hilker

AbstractNuclear star clusters (NSCs) are found in at least 70% of all galaxies, but their formation path is still unclear. In the most common scenarios, NSCs form in-situ from the galaxy’s central gas reservoir, through merging of globular clusters (GCs), or through a combination of the two. As the scenarios pose different expectations for angular momentum and stellar population properties of the NSC in comparison to the host galaxy and the GC system, it is necessary to characterise the stellar light, NSC, and GCs simultaneously. Wide-field observations with modern integral field units such as the Multi Unit Spectroscopic Explorer (MUSE) allow to perform such studies. However, at large distances, NSCs usually are not resolved in MUSE observations. The particularly large NSC (Reff ∼ 66 pc) of the early-type galaxy FCC 47 at distance of ∼20 Mpc is an exception and is therefore an ideal laboratory to constrain NSC formation of external galaxies.


2012 ◽  
Vol 10 (H16) ◽  
pp. 247-248 ◽  
Author(s):  
Young-Wook Lee ◽  
Seok-Joo Joo ◽  
Sang-Il Han ◽  
Chongsam Na ◽  
Dongwook Lim ◽  
...  

Increasing number of massive globular clusters (GCs) in the Milky Way are now turned out to host multiple stellar populations having different heavy element abundances enriched by supernovae. Recent observations have further shown that [CNO/Fe] is also enhanced in metal-rich subpopulations in most of these GCs, including ω Cen and M22 (Marino et al. 2011, 2012). In order to reflect this in our population modeling, we have expanded the parameter space of Y2 isochrones and horizontal-branch (HB) evolutionary tracks to include the cases of normal and enhanced nitrogen abundances ([N/Fe] = 0.0, 0.8, and 1.6). The observed variations in the total CNO content were reproduced by interpolating these nitrogen enhanced stellar models. Our test simulations with varying N and O abundances show that, once the total CNO sum ([CNO/Fe]) is held constant, both N and O have almost identical effects on the HR diagram (see Fig. 1).


2020 ◽  
Vol 498 (2) ◽  
pp. 2472-2491 ◽  
Author(s):  
J M Diederik Kruijssen ◽  
Joel L Pfeffer ◽  
Mélanie Chevance ◽  
Ana Bonaca ◽  
Sebastian Trujillo-Gomez ◽  
...  

ABSTRACT Globular clusters (GCs) formed when the Milky Way experienced a phase of rapid assembly. We use the wealth of information contained in the Galactic GC population to quantify the properties of the satellite galaxies from which the Milky Way assembled. To achieve this, we train an artificial neural network on the E-MOSAICS cosmological simulations of the co-formation and co-evolution of GCs and their host galaxies. The network uses the ages, metallicities, and orbital properties of GCs that formed in the same progenitor galaxies to predict the stellar masses and accretion redshifts of these progenitors. We apply the network to Galactic GCs associated with five progenitors: Gaia-Enceladus, the Helmi streams, Sequoia, Sagittarius, and the recently discovered ‘low-energy’ GCs, which provide an excellent match to the predicted properties of the enigmatic galaxy ‘Kraken’. The five galaxies cover a narrow stellar mass range [M⋆ = (0.6–4.6) × 108 M⊙], but have widely different accretion redshifts ($\mbox{$z_{\rm acc}$}=0.57\!-\!2.65$). All accretion events represent minor mergers, but Kraken likely represents the most major merger ever experienced by the Milky Way, with stellar and virial mass ratios of $\mbox{$r_{M_\star }$}=1$:$31^{+34}_{-16}$ and $\mbox{$r_{M_{\rm h}}$}=1$:$7^{+4}_{-2}$, respectively. The progenitors match the z = 0 relation between GC number and halo virial mass, but have elevated specific frequencies, suggesting an evolution with redshift. Even though these progenitors likely were the Milky Way’s most massive accretion events, they contributed a total mass of only log (M⋆, tot/M⊙) = 9.0 ± 0.1, similar to the stellar halo. This implies that the Milky Way grew its stellar mass mostly by in-situ star formation. We conclude by organizing these accretion events into the most detailed reconstruction to date of the Milky Way’s merger tree.


2006 ◽  
Vol 2 (S237) ◽  
pp. 489-489
Author(s):  
D. Vergani ◽  
C. Balkowski ◽  
H. Flores ◽  
V. Cayatte ◽  
F. Hammer ◽  
...  

AbstractWe have used the FLAMES multi-integral field unit system of the European Southern Observatory (VLT) centered on the cluster MS0451.6-0305 at z = 0.5386 to obtain the spatially resolved kinematics of the cluster members. The spectral data are supported by HST/ACS images that provide immediate morphological information of the cluster galaxies. The relevant structural parameters such as inclination, size, and orientation derived from optical high angular resolution images are compared with those derived from the kinematics. Our final goals are: 1. to derive the Tully-Fisher relation for cluster galaxies with regular kinematics. 2. to obtain the dynamical masses from resolved kinematics and stellar masses from optical images to be compared with local measurements.


2012 ◽  
Vol 543 ◽  
pp. A75 ◽  
Author(s):  
M. Lyubenova ◽  
H. Kuntschner ◽  
M. Rejkuba ◽  
D. R. Silva ◽  
M. Kissler-Patig ◽  
...  

2020 ◽  
Vol 496 (3) ◽  
pp. 2962-2997 ◽  
Author(s):  
C Maraston ◽  
L Hill ◽  
D Thomas ◽  
R Yan ◽  
Y Chen ◽  
...  

ABSTRACT We use the first release of the SDSS/MaStar stellar library comprising ∼9000, high S/N spectra, to calculate integrated spectra of stellar population models. The models extend over the wavelength range 0.36–1.03 µm and share the same spectral resolution ($R\sim 1800$) and flux calibration as the SDSS-IV/MaNGA galaxy data. The parameter space covered by the stellar spectra collected thus far allows the calculation of models with ages and chemical composition in the range $\rm {\mathit{ t}\gt 200 \,Myr, -2 \lt = [Z/H] \lt = + 0.35}$, which will be extended as MaStar proceeds. Notably, the models include spectra for dwarf main-sequence stars close to the core H-burning limit, as well as spectra for cold, metal-rich giants. Both stellar types are crucial for modelling λ > 0.7 µm absorption spectra. Moreover, a better parameter coverage at low metallicity allows the calculation of models as young as 500 Myr and the full account of the blue horizontal branch phase of old populations. We present models adopting two independent sets of stellar parameters (Teff, log g, [Z/H]). In a novel approach, their reliability is tested ‘on the fly’ using the stellar population models themselves. We perform tests with Milky Way and Magellanic Clouds globular clusters, finding that the new models recover their ages and metallicities remarkably well, with systematics as low as a few per cent for homogeneous calibration sets. We also fit a MaNGA galaxy spectrum, finding residuals of the order of a few per cent comparable to the state-of-art models, but now over a wider wavelength range.


2007 ◽  
Vol 3 (S246) ◽  
pp. 427-428 ◽  
Author(s):  
Michael Hilker ◽  
S. Mieske ◽  
H. Baumgardt ◽  
J. Dabringhausen

AbstractDynamical mass estimates of ultra-compact dwarfs galaxies and massive globular clusters in the Fornax and Virgo clusters and around the giant elliptical Cen A have revealed some surprising results: 1) above ~106M⊙ the mass-to-light (M/L) ratio increases with the objects' mass; 2) some UCDs/massive GCs show high M/L values (4 to 6) that are not compatible with standard stellar population models; and 3) in the luminosity-velocity dispersion diagram, UCDs deviate from the well-defined relation of “normal” GCs, being more in line with the Faber-Jackson relation of early-type galaxies. In this contribution, we present the observational evidences for high mass-to-light ratios of UCDs and discuss possible explanations for them.


2005 ◽  
Vol 13 ◽  
pp. 169-170
Author(s):  
Claudia Maraston ◽  
N. Bastian ◽  
R. P. Saglia ◽  
Markus Kissler-Patig ◽  
François Schweizer ◽  
...  

AbstractWe have measured the dynamical mass of the highly luminous star cluster W3 in the young merger remnant galaxy NGC 7252. The value is Mdyn = (8 ± 2) × 107M⊙, and represents the highest dynamically-confirmed mass for an extra-galactic star cluster so far. The dynamical mass is in excellent agreement with the luminous mass (Maraston et al. 2001). This results from the use of stellar population models that include correctly the brightest AGB stellar phase, dominant in young stellar populations. To classify W3, we employ the fundamental plane of stellar systems (Bender, Burstein & Faber 1992), for the first time in these kinds of studies. We find that W3 lies far from typical Milky Way globular clusters, but it is also far from the heavyweights ωCen in the Milky Way and G1 in M31, because it is too extended for its mass, and from dwarf elliptical galaxies because it is much more compact for its mass. Instead W3 lies close to the ultra-compact Fornax objects (Drinkwater et al. 2003) and to the compact elliptical M32, possibly shedding light on the still mysterious nature of these objects. A previously deserted region of the fundamental plane starts to be populated.


Sign in / Sign up

Export Citation Format

Share Document