scholarly journals Using MUSE-AO observations to constrain the formation of the large nuclear star cluster in FCC 47

2019 ◽  
Vol 14 (S351) ◽  
pp. 108-111
Author(s):  
Katja Fahrion ◽  
Mariya Lyubenova ◽  
Glenn van de Ven ◽  
Michael Hilker

AbstractNuclear star clusters (NSCs) are found in at least 70% of all galaxies, but their formation path is still unclear. In the most common scenarios, NSCs form in-situ from the galaxy’s central gas reservoir, through merging of globular clusters (GCs), or through a combination of the two. As the scenarios pose different expectations for angular momentum and stellar population properties of the NSC in comparison to the host galaxy and the GC system, it is necessary to characterise the stellar light, NSC, and GCs simultaneously. Wide-field observations with modern integral field units such as the Multi Unit Spectroscopic Explorer (MUSE) allow to perform such studies. However, at large distances, NSCs usually are not resolved in MUSE observations. The particularly large NSC (Reff ∼ 66 pc) of the early-type galaxy FCC 47 at distance of ∼20 Mpc is an exception and is therefore an ideal laboratory to constrain NSC formation of external galaxies.

2019 ◽  
Vol 628 ◽  
pp. A92 ◽  
Author(s):  
Katja Fahrion ◽  
Mariya Lyubenova ◽  
Glenn van de Ven ◽  
Ryan Leaman ◽  
Michael Hilker ◽  
...  

Context. Nuclear star clusters (NSCs) are found in at least 70% of all galaxies, but their formation path is still unclear. In the most common scenarios, NSCs form in-situ from the galaxy’s central gas reservoir, through the merging of globular clusters (GCs), or through a combination of both. Aims. As the scenarios pose different expectations for angular momentum and stellar population properties of the NSC in comparison to the host galaxy and the GC system, it is necessary to characterise the stellar light, NSC, and GCs simultaneously. The large NSC (reff = 66 pc) and rich GC system of the early-type Fornax cluster galaxy FCC 47 (NGC 1336) render this galaxy an ideal laboratory to constrain NSC formation. Methods. Using Multi Unit Spectroscopic Explorer science verification data assisted by adaptive optics, we obtained maps for the stellar kinematics and stellar-population properties of FCC 47. We extracted the spectra of the central NSC and determined line-of-sight velocities of 24 GCs and metallicities of five. Results. The galaxy shows the following kinematically decoupled components (KDCs): a disk and a NSC. Our orbit-based dynamical Schwarzschild model revealed that the NSC is a distinct kinematic feature and it constitutes the peak of metallicity and old ages in FCC 47. The main body consists of two counter-rotating populations and is dominated by a more metal-poor population. The GC system is bimodal with a dominant metal-poor population and the total GC system mass is ∼17% of the NSC mass (∼7 × 108 M⊙). Conclusions. The rotation, high metallicity, and high mass of the NSC cannot be explained by GC-inspiral alone. It most likely requires additional, quickly quenched, in-situ formation. The presence of two KDCs likely are evidence of a major merger that has significantly altered the structure of FCC 47, indicating the important role of galaxy mergers in forming the complex kinematics in the galaxy-NSC system.


2019 ◽  
Vol 872 (2) ◽  
pp. 202 ◽  
Author(s):  
Youkyung Ko ◽  
Myung Gyoon Lee ◽  
Hong Soo Park ◽  
Sungsoon Lim ◽  
Jubee Sohn ◽  
...  

2020 ◽  
Vol 495 (2) ◽  
pp. 2247-2264
Author(s):  
Evelyn J Johnston ◽  
Thomas H Puzia ◽  
Giuseppe D’Ago ◽  
Paul Eigenthaler ◽  
Gaspar Galaz ◽  
...  

ABSTRACT Clues to the formation and evolution of nuclear star clusters (NSCs) lie in their stellar populations. However, these structures are often very faint compared to their host galaxy, and spectroscopic analysis of NSCs is hampered by contamination of light from the rest of the system. With the introduction of wide-field integral field unit (IFU) spectrographs, new techniques have been developed to model the light from different components within galaxies, making it possible to cleanly extract the spectra of the NSCs and study their properties with minimal contamination from the light of the rest of the galaxy. This work presents the analysis of the NSCs in a sample of 12 dwarf galaxies in the Fornax Cluster observed with the Multi-Unit Spectroscopic Explorer (MUSE). Analysis of the stellar populations and star formation histories reveal that all the NSCs show evidence of multiple episodes of star formation, indicating that they have built up their mass further since their initial formation. The NSCs were found to have systematically lower metallicities than their host galaxies, which is consistent with a scenario for mass assembly through mergers with infalling globular clusters, whilst the presence of younger stellar populations and gas emission in the core of two galaxies is indicative of in-situ star formation. We conclude that the NSCs in these dwarf galaxies likely originated as globular clusters that migrated to the core of the galaxy that have built up their mass mainly through mergers with other infalling clusters, with gas-inflow leading to in-situ star formation playing a secondary role.


2021 ◽  
Vol 503 (4) ◽  
pp. 5997-6004
Author(s):  
Hagai B Perets ◽  
Paz Beniamini

ABSTRACT Environments of supernovae (SNe) and gamma-ray bursts (GRBs) link their progenitors to the underlying stellar population, providing critical clues for their origins. However, various transients including Ca-rich SNe and short-GRBs, appear to be located at remote locations, far from the stellar population of their host galaxy, challenging our understanding of their origin and/or physical evolution. These findings instigated models suggesting that either large velocity-kicks were imparted to the transient progenitors, allowing them to propagate to large distances and attain their remote locations; or that they formed in dense globular-clusters residing in the haloes. Here we show that instead, large spatial-offsets of such transients are naturally explained by observations of highly extended stellar populations in (mostly early-type) galaxy haloes, typically missed since they can only be identified through ultra-deep/stacked images. Consequently, no large velocity kicks, nor halo globular–cluster environments are required in order to explain the origin of these transients. These findings support thermonuclear explosions on white-dwarfs, for the origins of Ca-rich SNe progenitors, and the existence of small (or zero) kick-velocities given to short-GRB progenitors. Furthermore, since stacked/ultra-deep imaging show that early-type galaxies are more extended than late-type galaxies, studies of transients’ offset-distribution (e.g. type Ia SNe or FRBs) should account for host galaxy-type. Since early-type galaxies contain older stellar populations, transient arising from older stellar populations would have larger fractions of early-type hosts, and consequently larger fractions of large-offset transients. In agreement with our results for short-GRBs and Ca-rich SNe showing different offset distributions in early versus late-type galaxies.


2015 ◽  
Vol 11 (S317) ◽  
pp. 190-196 ◽  
Author(s):  
Jean P. Brodie ◽  
Aaron Romanowsky ◽  

AbstractWe use the kinematics of discrete tracers, primarily globular clusters (GCs) and planetary nebulae (PNe), along with measurements of the integrated starlight to explore the assembly histories of early type galaxies. Data for GCs and stars are taken from the SLUGGS wide field, 2-dimensional, chemo-dynamical survey (Brodie et al. 2014). Data for PNe are from the PN.S survey (see contributions by Gerhard and by Arnaboldi, this volume). We find widespread evidence for 2-phase galaxy assembly and intriguing constraints on hierarchical merging under a lambda CDM cosmology.


2020 ◽  
Vol 494 (4) ◽  
pp. 5293-5297
Author(s):  
Duncan A Forbes ◽  
Bililign T Dullo ◽  
Jonah Gannon ◽  
Warrick J Couch ◽  
Enrichetta Iodice ◽  
...  

ABSTRACT Using deep g, r, i imaging from the VST Early-type GAlaxy Survey (VEGAS), we have searched for ultradiffuse galaxies (UDGs) in the IC 1459 group. Assuming they are group members, we identify nine galaxies with physical sizes and surface brightnesses that match the UDG criteria within our measurement uncertainties. They have mean colours of g − i = 0.6 and stellar masses of ∼108 M⊙. Several galaxies appear to have associated systems of compact objects, e.g. globular clusters. Two UDGs contain a central bright nucleus, with a third UDG revealing a remarkable double nucleus. This appears to be the first reported detection of a double nucleus in a UDG – its origin is currently unclear.


2016 ◽  
Vol 11 (S321) ◽  
pp. 288-288
Author(s):  
N. F. Boardman ◽  
A. Weijmans ◽  
R. C. E. van den Bosch ◽  
L. Zhu ◽  
A. Yildirim ◽  
...  

Much progress has been made in recent years towards understanding how early-type galaxies (ETGs) form and evolve. SAURON (Bacon et al. 2001) integral-field spectroscopy from the ATLAS3D survey (Cappellari et al. 2011) has suggested that less massive ETGs are linked directly to spirals, whereas the most massive objects appear to form from a series of merging and accretion events (Cappellari et al. 2013). However, the ATLAS3D data typically only extends to about one half-light radius (or effective radius, Re), making it unclear if this picture is truly complete.


2020 ◽  
Vol 492 (3) ◽  
pp. 3859-3871 ◽  
Author(s):  
H Dalgleish ◽  
S Kamann ◽  
C Usher ◽  
H Baumgardt ◽  
N Bastian ◽  
...  

ABSTRACT Observed mass-to-light ratios (M/L) of metal-rich globular clusters (GCs) disagree with theoretical predictions. This discrepancy is of fundamental importance since stellar population models provide the stellar masses that underpin most of extragalactic astronomy, near and far. We have derived radial velocities for 1622 stars located in the centres of 59 Milky Way GCs – 12 of which have no previous kinematic information – using integral-field unit data from the WAGGS project. Using N-body models, we determine dynamical masses and M/LV for the studied clusters. Our sample includes NGC 6528 and NGC 6553, which extend the metallicity range of GCs with measured M/L up to [Fe/H] ∼ −0.1 dex. We find that metal-rich clusters have M/LV more than two times lower than what is predicted by simple stellar population models. This confirms that the discrepant M/L–[Fe/H] relation remains a serious concern. We explore how our findings relate to previous observations, and the potential causes for the divergence, which we conclude is most likely due to dynamical effects.


2019 ◽  
Vol 14 (S351) ◽  
pp. 112-116
Author(s):  
Paul Goudfrooij

AbstractI summarize the scenario by Goudfrooij (2018) in which the bulk of the ultraviolet (UV) upturn of giant early-type galaxies (ETGs) is due to helium-rich stellar populations that formed in massive metal-rich globular clusters (GCs) and subsequently dissolved in the strong tidal field in the central regions of the massive host galaxy. These massive GCs are assumed to show UV upturns similar to those observed recently in M87, the central galaxy in the Virgo cluster of galaxies. Data taken from the literature reveals a strong correlation between the strength of the UV upturn and the specific frequency of metal-rich GCs in ETGs. Adopting a Schechter function parametrization of GC mass functions, simulations of long-term dynamical evolution of GC systems show that this correlation can be explained by variations in the characteristic truncation mass Mc such that Mc increases with ETG luminosity in a way that is consistent with observed GC luminosity functions in ETGs. These findings suggest that the nature of the UV upturn in ETGs and the variation of its strength among ETGs are causally related to that of helium-rich populations in massive GCs, rather than intrinsic properties of field stars in ETGs.


2013 ◽  
Vol 773 (2) ◽  
pp. L36 ◽  
Author(s):  
Janet E. Colucci ◽  
María Fernanda Durán ◽  
Rebecca A. Bernstein ◽  
Andrew McWilliam

Sign in / Sign up

Export Citation Format

Share Document