scholarly journals Kraken reveals itself – the merger history of the Milky Way reconstructed with the E-MOSAICS simulations

2020 ◽  
Vol 498 (2) ◽  
pp. 2472-2491 ◽  
Author(s):  
J M Diederik Kruijssen ◽  
Joel L Pfeffer ◽  
Mélanie Chevance ◽  
Ana Bonaca ◽  
Sebastian Trujillo-Gomez ◽  
...  

ABSTRACT Globular clusters (GCs) formed when the Milky Way experienced a phase of rapid assembly. We use the wealth of information contained in the Galactic GC population to quantify the properties of the satellite galaxies from which the Milky Way assembled. To achieve this, we train an artificial neural network on the E-MOSAICS cosmological simulations of the co-formation and co-evolution of GCs and their host galaxies. The network uses the ages, metallicities, and orbital properties of GCs that formed in the same progenitor galaxies to predict the stellar masses and accretion redshifts of these progenitors. We apply the network to Galactic GCs associated with five progenitors: Gaia-Enceladus, the Helmi streams, Sequoia, Sagittarius, and the recently discovered ‘low-energy’ GCs, which provide an excellent match to the predicted properties of the enigmatic galaxy ‘Kraken’. The five galaxies cover a narrow stellar mass range [M⋆ = (0.6–4.6) × 108 M⊙], but have widely different accretion redshifts ($\mbox{$z_{\rm acc}$}=0.57\!-\!2.65$). All accretion events represent minor mergers, but Kraken likely represents the most major merger ever experienced by the Milky Way, with stellar and virial mass ratios of $\mbox{$r_{M_\star }$}=1$:$31^{+34}_{-16}$ and $\mbox{$r_{M_{\rm h}}$}=1$:$7^{+4}_{-2}$, respectively. The progenitors match the z = 0 relation between GC number and halo virial mass, but have elevated specific frequencies, suggesting an evolution with redshift. Even though these progenitors likely were the Milky Way’s most massive accretion events, they contributed a total mass of only log (M⋆, tot/M⊙) = 9.0 ± 0.1, similar to the stellar halo. This implies that the Milky Way grew its stellar mass mostly by in-situ star formation. We conclude by organizing these accretion events into the most detailed reconstruction to date of the Milky Way’s merger tree.

2020 ◽  
Vol 644 ◽  
pp. A87
Author(s):  
L. Wang ◽  
W. J. Pearson ◽  
V. Rodriguez-Gomez

Aims. We aim to perform consistent comparisons between observations and simulations on the mass dependence of the galaxy major merger fraction at low redshift over an unprecedentedly wide range of stellar masses (∼109 to 1012 M⊙). Methods. We first carry out forward modelling of ideal synthetic images of major mergers and non-mergers selected from the Next Generation Illustris Simulations (IllustrisTNG) to include major observational effects. We then train deep convolutional neural networks (CNNs) using realistic mock observations of galaxy samples from the simulations. Subsequently, we apply the trained CNNs to real the Kilo-Degree Survey (KiDS) images of galaxies selected from the Galaxy And Mass Assembly (GAMA) survey. Based on the major merger samples, which are detected in a consistent manner in the observations and simulations, we determine the dependence of major merger fraction on stellar mass at z ∼ 0.15 and make comparisons between the two. Results. The detected major merger fraction in the GAMA/KiDS observations has a fairly mild decreasing trend with increasing stellar mass over the mass range 109 M⊙ <  M* <  1011.5 M⊙. There is good agreement in the mass dependence of the major merger fraction in the GAMA/KiDS observations and the IllustrisTNG simulations over 109.5 M⊙ <  M* <  1010.5 M⊙. However, the observations and the simulations show some differences at M* >  1010.5 M⊙, possibly due to the supermassive blackhole feedback in its low-accretion state in the simulations which causes a sharp transition in the quenched fractions at this mass scale. The discrepancy could also be due to the relatively small volume of the simulations and/or differences in how stellar masses are measured in simulations and observations.


2020 ◽  
Vol 493 (3) ◽  
pp. 3422-3428 ◽  
Author(s):  
Marta Reina-Campos ◽  
Meghan E Hughes ◽  
J M Diederik Kruijssen ◽  
Joel L Pfeffer ◽  
Nate Bastian ◽  
...  

ABSTRACT Globular clusters (GCs) have been posited, alongside dwarf galaxies, as significant contributors to the field stellar population of the Galactic halo. In order to quantify their contribution, we examine the fraction of halo stars formed in stellar clusters in the suite of 25 present-day Milky Way-mass cosmological zoom simulations from the E-MOSAICS project. We find that a median of 2.3 and 0.3 per cent of the mass in halo field stars formed in clusters and GCs, defined as clusters more massive than 5 × 103 and 105 M⊙, respectively, with the 25–75th percentiles spanning 1.9–3.0 and 0.2–0.5 per cent being caused by differences in the assembly histories of the host galaxies. Under the extreme assumption that no stellar cluster survives to the present day, the mass fractions increase to a median of 5.9 and 1.8 per cent. These small fractions indicate that the disruption of GCs plays a subdominant role in the build-up of the stellar halo. We also determine the contributed halo mass fraction that would present signatures of light-element abundance variations considered to be unique to GCs, and find that clusters and GCs would contribute a median of 1.1 and 0.2 per cent, respectively. We estimate the contributed fraction of GC stars to the Milky Way halo, based on recent surveys, and find upper limits of 2–5 per cent (significantly lower than previous estimates), suggesting that models other than those invoking strong mass loss are required to describe the formation of chemically enriched stellar populations in GCs.


2021 ◽  
Vol 507 (3) ◽  
pp. 4211-4240 ◽  
Author(s):  
Christoph Engler ◽  
Annalisa Pillepich ◽  
Anna Pasquali ◽  
Dylan Nelson ◽  
Vicente Rodriguez-Gomez ◽  
...  

ABSTRACT We study the abundance of satellite galaxies around 198 Milky Way- (MW) and M31-like hosts in TNG50, the final installment in the IllustrisTNG suite of cosmological magnetohydrodynamical simulations. MW/M31-like analogues are defined as discy galaxies with stellar masses of $M_* = 10^{10.5 - 11.2}~\rm {M}_\odot$ in relative isolation at z = 0. By defining satellites as galaxies with $M_* \ge 5\times 10^{6}~\rm {M}_\odot$ within $300~\rm {kpc}$ (3D) of their host, we find a remarkable level of diversity and host-to-host scatter across individual host galaxies. The median TNG50 MW/M31-like galaxy hosts a total of $5^{+6}_{-3}$ satellites with $M_* \ge 8 \times 10^6~\rm {M}_\odot$, reaching up to $M_* \sim 10^{8.5^{+0.9}_{-1.1}}~\rm {M}_\odot$. Even at a fixed host halo mass of $10^{12}~\rm {M}_\odot$, the total number of satellites ranges between 0 and 11. The abundance of subhaloes with $M_\rm {dyn} \ge 5 \times 10^7~\rm {M}_\odot$ is larger by a factor of more than 10. The number of all satellites (subhaloes) ever accreted is larger by a factor of 4–5 (3–5) than those surviving to z = 0. Hosts with larger galaxy stellar mass, brighter K-band luminosity, more recent halo assembly, and – most significantly – larger total halo mass typically have a larger number of surviving satellites. The satellite abundances around TNG50 MW/M31-like galaxies are consistent with those of mass-matched hosts from observational surveys (e.g. SAGA) and previous simulations (e.g. Latte). While the observed MW satellite system falls within the TNG50 scatter across all stellar masses considered, M31 is slightly more satellite-rich than our 1σ scatter but well consistent with the high-mass end of the TNG50 sample. We find a handful of systems with both a Large and a Small Magellanic Cloud-like satellite. There is no missing satellites problem according to TNG50.


2019 ◽  
Vol 488 (1) ◽  
pp. 1235-1247 ◽  
Author(s):  
G C Myeong ◽  
E Vasiliev ◽  
G Iorio ◽  
N W Evans ◽  
V Belokurov

AbstractThe Gaia Sausage is the major accretion event that built the stellar halo of the Milky Way galaxy. Here, we provide dynamical and chemical evidence for a second substantial accretion episode, distinct from the Gaia Sausage. The Sequoia Event provided the bulk of the high-energy retrograde stars in the stellar halo, as well as the recently discovered globular cluster FSR 1758. There are up to six further globular clusters, including ω Centauri, as well as many of the retrograde substructures in Myeong et al., associated with the progenitor dwarf galaxy, named the Sequoia. The stellar mass in the Sequoia galaxy is ∼5 × 10  M⊙ , whilst the total mass is ∼1010 M⊙ , as judged from abundance matching or from the total sum of the globular cluster mass. Although clearly less massive than the Sausage, the Sequoia has a distinct chemodynamical signature. The strongly retrograde Sequoia stars have a typical eccentricity of ∼0.6, whereas the Sausage stars have no clear net rotation and move on predominantly radial orbits. On average, the Sequoia stars have lower metallicity by ∼0.3 dex and higher abundance ratios as compared to the Sausage. We conjecture that the Sausage and the Sequoia galaxies may have been associated and accreted at a comparable epoch.


2015 ◽  
Vol 11 (S317) ◽  
pp. 15-20
Author(s):  
Alan W. McConnachie

AbstractThe Local Group is now home to 102 known galaxies and candidates, with many new faint galaxies continuing to be discovered. The total stellar mass range spanned by this population covers a factor of close to a billion, from the faintest systems with stellar masses of order a few thousand to the Milky Way and Andromeda, with stellar masses of order 1011M⊙. Here, I discuss the evidence for stellar halos surrounding Local Group galaxies spanning from dwarf scales (with the case of the Andromeda II dwarf spheroidal), though to intermediate mass systems (M33) and finishing with M31. Evidence of extended stellar populations and merging is seen across the luminosity function, indicating that the processes that lead to halo formation are common at all mass scales.


2020 ◽  
Vol 492 (3) ◽  
pp. 3859-3871 ◽  
Author(s):  
H Dalgleish ◽  
S Kamann ◽  
C Usher ◽  
H Baumgardt ◽  
N Bastian ◽  
...  

ABSTRACT Observed mass-to-light ratios (M/L) of metal-rich globular clusters (GCs) disagree with theoretical predictions. This discrepancy is of fundamental importance since stellar population models provide the stellar masses that underpin most of extragalactic astronomy, near and far. We have derived radial velocities for 1622 stars located in the centres of 59 Milky Way GCs – 12 of which have no previous kinematic information – using integral-field unit data from the WAGGS project. Using N-body models, we determine dynamical masses and M/LV for the studied clusters. Our sample includes NGC 6528 and NGC 6553, which extend the metallicity range of GCs with measured M/L up to [Fe/H] ∼ −0.1 dex. We find that metal-rich clusters have M/LV more than two times lower than what is predicted by simple stellar population models. This confirms that the discrepant M/L–[Fe/H] relation remains a serious concern. We explore how our findings relate to previous observations, and the potential causes for the divergence, which we conclude is most likely due to dynamical effects.


2019 ◽  
Vol 14 (S351) ◽  
pp. 155-160
Author(s):  
Charli M. Sakari

AbstractIntegrated light (IL) spectroscopy enables studies of stellar populations beyond the Milky Way and its nearest satellites. In this paper, I will review how IL spectroscopy reveals essential information about globular clusters and the assembly histories of their host galaxies, concentrating particularly on the metallicities and detailed chemical abundances of the GCs in M31. I will also briefly mention the effects of multiple populations on IL spectra, and how observations of distant globular clusters help constrain the source(s) of light-element abundance variations. I will end with future perspectives, emphasizing how IL spectroscopy can bridge the gap between Galactic and extragalactic astronomy.


2019 ◽  
Vol 14 (S353) ◽  
pp. 286-288
Author(s):  
Dieu D. Nguyen

AbstractThe existence intermediate mass black holes (IMBH, MBH ≲ 106M⊙) at the centers low-mass galaxies with stellar masses between (1–10)×10M⊙ are key to constraining the origin of black hole (BH) seeds and understanding the physics deriving the co-evolution of central BHs and their host galaxies. However, finding and weighing IMBH is challenging. Here, we present the first observational evidence for such IMBHs at the centers of the five nearest early-type galaxies (D < 3.5 Mpc, ETGs) revealed by adaptive optics kinematics from Gemini and VLT and high-resolution HST spectroscopy. We find that all five galaxies appear to host IMBHs with four of the five having masses below 1 million M⊙ and the lowest mass BH being only ∼7,000 M⊙. This work provides a first glimpse of the demographics of IMBHs in this galaxy mass range and at velocity dispersions < 70 km/s, and thus provides an important extension to the bulge mass and galaxy dispersion scaling relations. The ubiquity of central BHs in these galaxies provides a unique constraint on BH seed formation scenarios, favoring a formation mechanism that produces an abundance of low-mass seed BHs.


2015 ◽  
Vol 11 (S319) ◽  
pp. 139-139
Author(s):  
Y. C. Liang ◽  
X. Shao ◽  
M. Dennefeld ◽  
X. Y. Chen ◽  
L. Zhou ◽  
...  

AbstractWe compare the host galaxies of 902 supernovae, including Type Ia, II and Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the SDSS DR7. We further selected 213 galaxies by requiring the light fraction of spectral observations > 15%, which could represent well the global properties of the galaxies. The diagrams related to Dn(4000), HδA, stellar masses, SFRs and specific SFRs for the SNe hosts show that almost all SNe II and most of SNe Ibc occur in SF galaxies. A significant fraction of SNe Ia occurs in AGNs and Absorp galaxies. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures < 15% of the total light. These comparison galaxies appear biased towards higher 12+log(O/H) (~0.1dex) at a given stellar mass, suggesting the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.


2020 ◽  
Vol 492 (3) ◽  
pp. 3631-3646 ◽  
Author(s):  
J Ted Mackereth ◽  
Jo Bovy

ABSTRACT The stellar mass in the halo of the Milky Way is notoriously difficult to determine, owing to the paucity of its stars in the solar neighbourhood. With tentative evidence from Gaia that the nearby stellar halo is dominated by a massive accretion event – referred to as Gaia-Enceladus or Sausage – these constraints are now increasingly urgent. We measure the mass in kinematically selected mono-abundance populations (MAPs) of the stellar halo between −3 &lt; [Fe/H] &lt; −1 and 0.0 &lt; [Mg/Fe] &lt; 0.4 using red giant star counts from APOGEE DR14. We find that MAPs are well fit by single power laws on triaxial ellipsoidal surfaces, and we show that that the power-law slope α changes such that high [Mg/Fe] populations have α ∼ 4, whereas low [Mg/Fe] MAPs are more extended with shallow slopes, α ∼ 2. We estimate the total stellar mass to be $M_{*,\mathrm{tot}} = 1.3^{+0.3}_{-0.2}\times 10^{9}\ \mathrm{M_{\odot}}$, of which we estimate ${\sim}0.9^{+0.2}_{-0.1} \times 10^{9}\ \mathrm{M_{\odot}}$ to be accreted. We estimate that the mass of accreted stars with e &gt; 0.7 is M*,accreted, e &gt; 0.7 = 3 ± 1 (stat.) ± 1 (syst.) × 108 M⊙, or ${\sim}30{-}50{{\ \rm per\ cent}}$ of the accreted halo mass. If the majority of these stars are the progeny of a massive accreted dwarf, this places an upper limit on its stellar mass, and implies a halo mass for the progenitor of ∼1010.2 ± 0.2 M⊙. This constraint not only shows that the Gaia-Enceladus/Sausage progenitor may not be as massive as originally suggested, but that the majority of the Milky Way stellar halo was accreted. These measurements are an important step towards fully reconstructing the assembly history of the Milky Way.


Sign in / Sign up

Export Citation Format

Share Document