scholarly journals Measuring the eccentricity of binary black holes in GWTC-1 by using the inspiral-only waveform

2020 ◽  
Vol 495 (1) ◽  
pp. 466-478 ◽  
Author(s):  
Shichao Wu ◽  
Zhoujian Cao ◽  
Zong-Hong Zhu

ABSTRACT In this article, we estimate the eccentricity of 10 binary black holes (BBHs) in the Gravitational-Wave Transient Catalog GWTC-1 by using the inspiral-only BBH waveform template EccentricFD. First, we test our method with simulated eccentric BBHs. Afterwards we apply the method to real BBH gravitational-wave data. We find that the BBHs in GWTC-1, with the exception of GW151226, GW170608 and GW170729, show very small eccentricity. Their upper limits on eccentricity range from 0.033–0.084 with 90 per cent credible interval at a reference frequency of 10 Hz. For GW151226, GW170608 and GW170729, the upper limits are higher than 0.1. The relatively large eccentricity of GW151226 and GW170729 is probably due to ignoring χeff and the low signal-to-noise ratio, and GW170608 is worthy of follow-up research. We also point out the limitations of the inspiral-only non-spinning waveform template in eccentricity measurement. Measurement of BBH eccentricity helps us to understand its formation mechanism. With an increase in the number of BBH gravitational-wave events and a more complete eccentric BBH waveform template, this will become a viable method in the near future.

2019 ◽  
Vol 490 (4) ◽  
pp. 5210-5216 ◽  
Author(s):  
Isobel M Romero-Shaw ◽  
Paul D Lasky ◽  
Eric Thrane

ABSTRACT Binary black holes are thought to form primarily via two channels: isolated evolution and dynamical formation. The component masses, spins, and eccentricity of a binary black hole system provide clues to its formation history. We focus on eccentricity, which can be a signature of dynamical formation. Employing the spin-aligned eccentric waveform model seobnre, we perform Bayesian inference to measure the eccentricity of binary black hole merger events in the first gravitational-wave transient catalogue of LIGO and Virgo. We find that all of these events are consistent with zero eccentricity. We set upper limits on eccentricity ranging from 0.02 to 0.05 with 90  per cent confidence at a reference frequency of $10\, {\rm Hz}$. These upper limits do not significantly constrain the fraction of LIGO–Virgo events formed dynamically in globular clusters, because only $\sim 5{{\ \rm per\ cent}}$ are expected to merge with measurable eccentricity. However, with the gravitational-wave transient catalogue set to expand dramatically over the coming months, it may soon be possible to significantly constrain the fraction of mergers taking place in globular clusters using eccentricity measurements.


2020 ◽  
Vol 496 (1) ◽  
pp. 182-196 ◽  
Author(s):  
Chang Liu ◽  
Lijing Shao ◽  
Junjie Zhao ◽  
Yong Gao

ABSTRACT The Advanced LIGO and Virgo detectors opened a new era to study black holes (BHs) in our Universe. A population of stellar-mass binary black holes (BBHs) are discovered to be heavier than previously expected. These heavy BBHs provide us an opportunity to achieve multiband observation with ground-based and space-based gravitational-wave (GW) detectors. In this work, we use BBHs discovered by the LIGO/Virgo Collaboration as indubitable examples, and study in great detail the prospects for multiband observation with GW detectors in the near future. We apply the Fisher matrix to spinning, non-precessing inspiral-merger-ringdown waveforms, while taking the motion of space-based GW detectors fully into account. Our analysis shows that, detectors with decihertz sensitivity are expected to log stellar-mass BBH signals with very large signal-to-noise ratio and provide accurate parameter estimation, including the sky location and time to coalescence. Furthermore, the combination of multiple detectors will achieve unprecedented measurement of BBH properties. As an explicit example, we present the multiband sensitivity to the generic dipole radiation for BHs, which is vastly important for the equivalence principle in the foundation of gravitation, in particular for those theories that predict curvature-induced scalarization of BHs.


Author(s):  
Ju Chen ◽  
Changshuo Yan ◽  
Youjun Lu ◽  
Yuetong Zhao ◽  
Junqiang Ge

Abstract Gravitational wave (GW) signals from compact binary coalescences can be used as standard sirens to constrain cosmological parameters if its redshift can be measured independently by electromagnetic signals. However, mergers of stellar binary black holes (BBHs) may not have electromagnetic counterparts and thus have no direct redshift measurements. These dark sirens may be still used to statistically constrain cosmological parameters by combining their GW measured luminosity distances and localization with deep redshift surveys of galaxies around it. We investigate this dark siren method to constrain cosmological parameters in details by using mock BBH and galaxy samples. We find that the Hubble constant can be well constrained with an accuracy $\lesssim 1\%$ with a few tens or more BBH mergers at redshift up to $1$ if GW observations can provide accurate estimates of its luminosity distance (with relative error of $\lesssim 0.01$) and localization ($\lesssim 0.1\mathrm{deg}^2$), though the constraint may be significantly biased if the luminosity distance and localization errors are larger. We further generate mock BBH samples, according to current constraints on BBH merger rate and the distributions of BBH properties, and find that Deci-Hertz Observatory (DO) in a half year observation period may detect about one hundred BBHs with signal-to-noise ratio $\varrho \gtrsim 30$, relative luminosity distance error $\lesssim 0.02$, and localization error $\lesssim 0.01\mathrm{deg}^2$. By applying the dark standard siren method, we find that the Hubble constant can be constrained to $\sim 0.1-1\%$ level using these DO BBHs, an accuracy comparable to the constraints obtained by using electromagnetic observations in the near future, thus it may provide insight into the Hubble tension. We also demonstrate that the constraint on the Hubble constant using this dark siren method are robust and do not depend on the choice of the prior for the properties of BBH host galaxies.


2021 ◽  
Vol 923 (2) ◽  
pp. L22
Author(s):  
Zaven Arzoumanian ◽  
Paul T. Baker ◽  
Harsha Blumer ◽  
Bence Bécsy ◽  
Adam Brazier ◽  
...  

Abstract We search NANOGrav’s 12.5 yr data set for evidence of a gravitational-wave background (GWB) with all the spatial correlations allowed by general metric theories of gravity. We find no substantial evidence in favor of the existence of such correlations in our data. We find that scalar-transverse (ST) correlations yield signal-to-noise ratios and Bayes factors that are higher than quadrupolar (tensor-transverse, TT) correlations. Specifically, we find ST correlations with a signal-to-noise ratio of 2.8 that are preferred over TT correlations (Hellings and Downs correlations) with Bayesian odds of about 20:1. However, the significance of ST correlations is reduced dramatically when we include modeling of the solar system ephemeris systematics and/or remove pulsar J0030+0451 entirely from consideration. Even taking the nominal signal-to-noise ratios at face value, analyses of simulated data sets show that such values are not extremely unlikely to be observed in cases where only the usual TT modes are present in the GWB. In the absence of a detection of any polarization mode of gravity, we place upper limits on their amplitudes for a spectral index of γ = 5 and a reference frequency of f yr = 1 yr−1. Among the upper limits for eight general families of metric theories of gravity, we find the values of A TT 95 % = ( 9.7 ± 0.4 ) × 10 − 16 and A ST 95 % = ( 1.4 ± 0.03 ) × 10 − 15 for the family of metric spacetime theories that contain both TT and ST modes.


2020 ◽  
Vol 500 (3) ◽  
pp. 4095-4109
Author(s):  
Rosa Valiante ◽  
Monica Colpi ◽  
Raffaella Schneider ◽  
Alberto Mangiagli ◽  
Matteo Bonetti ◽  
...  

ABSTRACT Third-generation ground-based gravitational wave interferometers, like the Einstein Telescope (ET), Cosmic Explorer, and the Laser Interferometer Space Antenna (LISA), will detect coalescing binary black holes over a wide mass spectrum and across all cosmic epochs. We track the cosmological growth of the earliest light and heavy seeds that swiftly transit into the supermassive domain using a semi-analytical model for the formation of quasars at z = 6.4, 2, and 0.2, in which we follow black hole coalescences driven by triple interactions. We find that light-seed binaries of several $10^2 \, {\rm M_\odot }$ are accessible to ET with a signal-to-noise ratio (S/N) of 10–20 at 6 < z < 15. They then enter the LISA domain with larger S/N as they grow to a few $10^4 \, {\rm M_\odot }$. Detecting their gravitational signal would provide first time evidence that light seeds form, grow, and dynamically pair during galaxy mergers. The electromagnetic emission of accreting black holes of similar mass and redshift is too faint to be detected even for the deepest future facilities. ET will be our only chance to discover light seeds forming at cosmic dawn. At 2 < z < 8, we predict a population of ‘starved binaries’, long-lived marginally growing light-seed pairs, to be loud sources in the ET bandwidth (S/N > 20). Mergers involving heavy seeds (${\sim} 10^5\!-\!10^6 \, {\rm M_\odot }$) would be within reach up to z = 20 in the LISA frequency domain. The lower z model predicts $11.25 \, (18.7)$ ET (LISA) events per year, overall.


Author(s):  
Manuel Arca Sedda ◽  
Christopher P. L. Berry ◽  
Karan Jani ◽  
Pau Amaro-Seoane ◽  
Pierre Auclair ◽  
...  

AbstractSince 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the $\sim 10$ ∼ 10 –103 Hz band of ground-based observatories and the $\sim 10^{-4}$ ∼ 1 0 − 4 –10− 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ($\sim 10^{2}$ ∼ 1 0 2 –104M⊙) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.


2014 ◽  
Vol 89 (2) ◽  
Author(s):  
Stephen Privitera ◽  
Satyanarayan R. P. Mohapatra ◽  
Parameswaran Ajith ◽  
Kipp Cannon ◽  
Nickolas Fotopoulos ◽  
...  

2016 ◽  
Vol 116 (13) ◽  
Author(s):  
B. P. Abbott ◽  
R. Abbott ◽  
T. D. Abbott ◽  
M. R. Abernathy ◽  
F. Acernese ◽  
...  

2000 ◽  
Vol 175 ◽  
pp. 689-692
Author(s):  
Natalya V. Raguzova ◽  
Vladimir M. Lipunov

AbstractUsing a Monte Carlo simulation of the modern scenario of the evolution of binary systems (the “Scenario Machine”), we calculate the number of binary black holes with Be stars and their expected observational properties. So far, only two possible candidates for Be/BH binaries have been proposed among the observable sources, the superluminal source GRS 1915+105 in the Galaxy and RX J0117.6–7330 in the SMC. We obtained an evolutionary track that can lead to the formation of such systems. The modern evolutionary scenario predicts the existence of binary black holes on eccentric orbits around Be stars and such systems may be discovered in the near future.


Sign in / Sign up

Export Citation Format

Share Document