scholarly journals Constraining the growth rate of structure with phase correlations

2020 ◽  
Vol 497 (2) ◽  
pp. 1765-1790
Author(s):  
Joyce Byun ◽  
Felipe Oliveira Franco ◽  
Cullan Howlett ◽  
Camille Bonvin ◽  
Danail Obreschkow

ABSTRACT We show that correlations between the phases of the galaxy density field in redshift space provide additional information about the growth rate of large-scale structure that is complementary to the power-spectrum multipoles. In particular, we consider the multipoles of the line correlation function (LCF), which correlates phases between three collinear points, and use the Fisher forecasting method to show that the LCF multipoles can break the degeneracy between the measurement of the growth rate of structure f and the amplitude of perturbations σ8 that is present in the power-spectrum multipoles at large scales. This leads to an improvement in the measurement of f and σ8 by up to 220 per cent for $k_{\rm max} = 0.15 \, h\, \mathrm{Mpc}^{-1}$ and up to 50 per cent for $k_{\rm max} = 0.30 \, h\, \mathrm{Mpc}^{-1}$ at redshift z = 0.25, with respect to power-spectrum measurements alone for the upcoming generation of galaxy surveys like DESI and Euclid. The average improvements in the constraints on f and σ8 for $k_{\rm max} = 0.15 \, h\, \mathrm{Mpc}^{-1}$ are ∼90 per cent for the DESI BGS sample with mean redshift $\overline{z}=0.25$, ∼40 per cent for the DESI ELG sample with $\overline{z}=1.25$, and ∼40 per cent for the Euclid Hα galaxies with $\overline{z}=1.3$. For $k_{\rm max} = 0.30 \, h\, \mathrm{Mpc}^{-1}$, the average improvements are ∼40 per cent for the DESI BGS sample and ∼20 per cent for both the DESI ELG and Euclid Hα galaxies.

2019 ◽  
Vol 485 (4) ◽  
pp. 5059-5072 ◽  
Author(s):  
Phoebe Upton Sanderbeck ◽  
Vid Iršič ◽  
Matthew McQuinn ◽  
Avery Meiksin

ABSTRACT Spatial fluctuations in ultraviolet backgrounds can subtly modulate the distribution of extragalactic sources, a potential signal and systematic for large-scale structure surveys. While this modulation has been shown to be significant for 3D Ly α forest surveys, its relevance for other large-scale structure probes has been hardly explored, despite being the only astrophysical process that likely can affect clustering measurements on the scales of ≳Mpc. We estimate that the background fluctuations, modulating the amount of H i, have a fractional effect of (0.03–0.3) × (k/[10−2 Mpc−1])−1 on the power spectrum of 21 cm intensity maps at z = 1–3. We find a smaller effect for H α and Ly α intensity mapping surveys of (0.001–0.1) × (k/[10−2 Mpc−1])−1 and even smaller effect for more traditional surveys that correlate the positions of individual H α or Ly α emitters. We also estimate the effect of backgrounds on low-redshift galaxy surveys in general based on a simple model in which background fluctuations modulate the rate halo gas cools, modulating star formation: We estimate a maximum fractional effect on the power of ∼0.01 (k/[10−2 Mpc−1])−1 at z = 1. We compare sizes of these imprints to cosmological parameter benchmarks for the next generation of redshift surveys: We find that ionizing backgrounds could result in a bias on the squeezed triangle non-Gaussianity parameter fNL that can be larger than unity for power spectrum measurements with a SPHEREx-like galaxy survey, and typical values of intensity bias. Marginalizing over a shape of the form k−1PL, where PL is the linear matter power spectrum, removes much of this bias at the cost of ${\approx } 40{{\ \rm per\ cent}}$ larger statistical errors.


1995 ◽  
Vol 148 ◽  
pp. 510-521
Author(s):  
C.A. Collins

AbstractIn this paper some of the major results from the COSMOS and APM digitised galaxy surveys are presented. The main motivation behind these catalogues was to study large-scale structure in the universe. We begin by outlining the importance of such studies to cosmology and discussing the early results from the visually compiled galaxy catalogues. The impact of the digitised catalogues is demonstrated by focussing on three key areas of research; the galaxy-galaxy two-point angular correlation function, the cluster-cluster spatial correlation function, and galaxy number counts.


2014 ◽  
Vol 11 (S308) ◽  
pp. 617-622
Author(s):  
Sylvain de la Torre

AbstractWe present the first measurement of the growth rate of structure at z=0.8. It has been obtained from the redshift-space distortions observed in the galaxy clustering pattern in the VIMOS Public Redshift survey (VIPERS) first data release. VIPERS is a large galaxy redshift survey probing the large-scale structure at 0.5 < z < 1.2 with an unprecedented accuracy. This measurement represents a new reference in the distant Universe, which has been poorly explored until now. We obtain σ8 = 0.47 ± 0.08 at z = 0.8 that is consistent with the predictions of standard cosmological models based on Einstein gravity. This measurement alone is however not accurate enough to allow the detection of possible deviations from standard gravity.


2014 ◽  
Vol 10 (S306) ◽  
pp. 347-350
Author(s):  
Alejandro Guarnizo ◽  
Luca Amendola ◽  
Martin Kunz ◽  
Adrian Vollmer

AbstractFrom the galaxy power spectrum in redshift space, we derive semi-analytical results on the generic degeneracy of galaxy clustering measurements. Defining the observables A = Gbσ8 and R = Gfσ8, (being G the growth function, b the bias, f the growth rate, and σ8 the amplitude of the power spectrum), we perform a Fisher matrix formalism to forecast the expected precision of these quantities for a Euclid-like survey. Among the results we found that galaxy surveys have generically a slightly negative correlation between A and R, and they can always measure R about 3.7 to 4.7 times better than A.


2021 ◽  
Vol 502 (2) ◽  
pp. 2087-2096
Author(s):  
Ryan J Turner ◽  
Chris Blake ◽  
Rossana Ruggeri

ABSTRACT We present an improved framework for estimating the growth rate of large-scale structure, using measurements of the galaxy–velocity cross-correlation in configuration space. We consider standard estimators of the velocity autocorrelation function, ψ1 and ψ2, the two-point galaxy correlation function, ξgg, and introduce a new estimator of the galaxy–velocity cross-correlation function, ψ3. By including pair counts measured from random catalogues of velocities and positions sampled from distributions characteristic of the true data, we find that the variance in the galaxy–velocity cross-correlation function is significantly reduced. Applying a covariance analysis and χ2 minimization procedure to these statistics, we determine estimates and errors for the normalized growth rate fσ8 and the parameter β = f/b, where b is the galaxy bias factor. We test this framework on mock hemisphere data sets for redshift z &lt; 0.1 with realistic velocity noise constructed from the l-picola simulation code, and find that we are able to recover the fiducial value of fσ8 from the joint combination of ψ1 + ψ2 + ψ3 + ξgg, with 15 per cent accuracy from individual mocks. We also recover the fiducial fσ8 to within 1σ regardless of the combination of correlation statistics used. When we consider all four statistics together we find that the statistical uncertainty in our measurement of the growth rate is reduced by $59{{\ \rm per\ cent}}$ compared to the same analysis only considering ψ2, by $53{{\ \rm per\ cent}}$ compared to the same analysis only considering ψ1, and by $52{{\ \rm per\ cent}}$ compared to the same analysis jointly considering ψ1 and ψ2.


2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Elena Massara ◽  
Francisco Villaescusa-Navarro ◽  
Shirley Ho ◽  
Neal Dalal ◽  
David N. Spergel

2021 ◽  
Vol 2021 (12) ◽  
pp. 003
Author(s):  
José Fonseca ◽  
Chris Clarkson

Abstract In this paper, we study how to directly measure the effect of peculiar velocities in the observed angular power spectra. We do this by constructing a new anti-symmetric estimator of Large Scale Structure using different dark matter tracers. We show that the Doppler term is the major component of our estimator and we show that we can measure it with a signal-to-noise ratio up to ∼ 50 using a futuristic SKAO HI galaxy survey. We demonstrate the utility of this estimator by using it to provide constraints on the Euler equation.


1991 ◽  
Vol 148 ◽  
pp. 89-95
Author(s):  
S. J. Meatheringham

The Small and Large Magellanic Clouds (SMC, LMC) are of considerable interest from a kinematical viewpoint. The tidal interation of the Clouds with each other and with the Galaxy appears to have been quite significant in recent times (Murai & Fujimoto 1980). The SMC in particular appears to have been considerably disrupted by a recent close passage to the LMC (Mathewson & Ford 1984, Mathewson 1984, Mathewson et al. 1986). For the LMC Freeman et al. (1983) found that the young and old populations have significantly different rotation solutions.Planetary Nebulae (PN) form a population with age intermediate between the HI and young clusters and the old Population II clusters. A large number of PN are known in the MCs. Sanduleak et al. (1978) compiled a list of 102 in the LMC and 28 in the SMC. Since then other authors have increased the total number known to approximately 140 in the LMC and 50 in the SMC.


Sign in / Sign up

Export Citation Format

Share Document