scholarly journals Galaxy Clustering in the Southern Hemisphere

1995 ◽  
Vol 148 ◽  
pp. 510-521
Author(s):  
C.A. Collins

AbstractIn this paper some of the major results from the COSMOS and APM digitised galaxy surveys are presented. The main motivation behind these catalogues was to study large-scale structure in the universe. We begin by outlining the importance of such studies to cosmology and discussing the early results from the visually compiled galaxy catalogues. The impact of the digitised catalogues is demonstrated by focussing on three key areas of research; the galaxy-galaxy two-point angular correlation function, the cluster-cluster spatial correlation function, and galaxy number counts.

2020 ◽  
Vol 15 (S359) ◽  
pp. 188-189
Author(s):  
Daniela Hiromi Okido ◽  
Cristina Furlanetto ◽  
Marina Trevisan ◽  
Mônica Tergolina

AbstractGalaxy groups offer an important perspective on how the large-scale structure of the Universe has formed and evolved, being great laboratories to study the impact of the environment on the evolution of galaxies. We aim to investigate the properties of a galaxy group that is gravitationally lensing HELMS18, a submillimeter galaxy at z = 2.39. We obtained multi-object spectroscopy data using Gemini-GMOS to investigate the stellar kinematics of the central galaxies, determine its members and obtain the mass, radius and the numerical density profile of this group. Our final goal is to build a complete description of this galaxy group. In this work we present an analysis of its two central galaxies: one is an active galaxy with z = 0.59852 ± 0.00007, while the other is a passive galaxy with z = 0.6027 ± 0.0002. Furthermore, the difference between the redshifts obtained using emission and absorption lines indicates an outflow of gas with velocity v = 278.0 ± 34.3 km/s relative to the galaxy.


2020 ◽  
Vol 492 (3) ◽  
pp. 4268-4282 ◽  
Author(s):  
Adam Soussana ◽  
Nora Elisa Chisari ◽  
Sandrine Codis ◽  
Ricarda S Beckmann ◽  
Yohan Dubois ◽  
...  

ABSTRACT The intrinsic correlations of galaxy shapes and orientations across the large-scale structure of the Universe are a known contaminant to weak gravitational lensing. They are known to be dependent on galaxy properties, such as their mass and morphologies. The complex interplay between alignments and the physical processes that drive galaxy evolution remains vastly unexplored. We assess the sensitivity of intrinsic alignments (shapes and angular momenta) to active galactic nuclei (AGN) feedback by comparing galaxy alignment in twin runs of the cosmological hydrodynamical Horizon simulation, which do and do not include AGN feedback, respectively. We measure intrinsic alignments in three dimensions and in projection at $z$ = 0 and $z$ = 1. We find that the projected alignment signal of all galaxies with resolved shapes with respect to the density field in the simulation is robust to AGN feedback, thus giving similar predictions for contamination to weak lensing. The relative alignment of galaxy shapes around galaxy positions is however significantly impacted, especially when considering high-mass ellipsoids. Using a sample of galaxy ‘twins’ across simulations, we determine that AGN changes both the galaxy selection and their actual alignments. Finally, we measure the alignments of angular momenta of galaxies with their nearest filament. Overall, these are more significant in the presence of AGN as a result of the higher abundance of massive pressure-supported galaxies.


2020 ◽  
Vol 497 (2) ◽  
pp. 1765-1790
Author(s):  
Joyce Byun ◽  
Felipe Oliveira Franco ◽  
Cullan Howlett ◽  
Camille Bonvin ◽  
Danail Obreschkow

ABSTRACT We show that correlations between the phases of the galaxy density field in redshift space provide additional information about the growth rate of large-scale structure that is complementary to the power-spectrum multipoles. In particular, we consider the multipoles of the line correlation function (LCF), which correlates phases between three collinear points, and use the Fisher forecasting method to show that the LCF multipoles can break the degeneracy between the measurement of the growth rate of structure f and the amplitude of perturbations σ8 that is present in the power-spectrum multipoles at large scales. This leads to an improvement in the measurement of f and σ8 by up to 220 per cent for $k_{\rm max} = 0.15 \, h\, \mathrm{Mpc}^{-1}$ and up to 50 per cent for $k_{\rm max} = 0.30 \, h\, \mathrm{Mpc}^{-1}$ at redshift z = 0.25, with respect to power-spectrum measurements alone for the upcoming generation of galaxy surveys like DESI and Euclid. The average improvements in the constraints on f and σ8 for $k_{\rm max} = 0.15 \, h\, \mathrm{Mpc}^{-1}$ are ∼90 per cent for the DESI BGS sample with mean redshift $\overline{z}=0.25$, ∼40 per cent for the DESI ELG sample with $\overline{z}=1.25$, and ∼40 per cent for the Euclid Hα galaxies with $\overline{z}=1.3$. For $k_{\rm max} = 0.30 \, h\, \mathrm{Mpc}^{-1}$, the average improvements are ∼40 per cent for the DESI BGS sample and ∼20 per cent for both the DESI ELG and Euclid Hα galaxies.


1996 ◽  
Vol 171 ◽  
pp. 470-470
Author(s):  
D. Woods ◽  
G.G. Fahlman ◽  
H.B. Richer

The angular correlation function (ω(θ)) for faint, magnitude-limited samples is an important test of large scale structure formation scenarios, as well as being a valuable probe of galaxy evolution. By measuring ω(θ) one hopes to better understand the mechanism or galaxy species responsible for the number counts excess (relative to “no-evolution” models of galaxies) typically observed at blue wavelengths. Images of three ‘blank’ fields were obtained at the prime focus of the CFHT with sub-arcsecond seeing in V, R and I, to magnitude limits of 25, 24.5 and 24, respectively. The angular correlation functions calculated for one field, NF1, in V is shown in Figure 1. Clearly the amplitude of ω(θ) is decreasing at fainter magnitude limits. Note the number of objects detected are not sufficient to accurately measure ω(θ) for an individual field, in a given colour, to significantly small angular separations. In order to do this we must combine the data from our three fields and perform a multi-field fit. A full summary of this analysis will be presented in Woods et al. (1995, in prep.) including determinations of ω(θ) using galaxy samples culled from all our fields and selected by magnitude, colour and surface brightness.


2020 ◽  
Vol 499 (2) ◽  
pp. 2598-2607
Author(s):  
Mike (Shengbo) Wang ◽  
Florian Beutler ◽  
David Bacon

ABSTRACT Relativistic effects in clustering observations have been shown to introduce scale-dependent corrections to the galaxy overdensity field on large scales, which may hamper the detection of primordial non-Gaussianity fNL through the scale-dependent halo bias. The amplitude of relativistic corrections depends not only on the cosmological background expansion, but also on the redshift evolution and sensitivity to the luminosity threshold of the tracer population being examined, as parametrized by the evolution bias be and magnification bias s. In this work, we propagate luminosity function measurements from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) to be and s for the quasar (QSO) sample, and thereby derive constraints on relativistic corrections to its power spectrum multipoles. Although one could mitigate the impact on the fNL signature by adjusting the redshift range or the luminosity threshold of the tracer sample being considered, we suggest that, for future surveys probing large cosmic volumes, relativistic corrections should be forward modelled from the tracer luminosity function including its uncertainties. This will be important to quasar clustering measurements on scales $k \sim 10^{-3}\, h\, {\rm Mpc}^{-1}$ in upcoming surveys such as the Dark Energy Spectroscopic Instrument (DESI), where relativistic corrections can overwhelm the expected fNL signature at low redshifts z ≲ 1 and become comparable to fNL ≃ 1 in the power spectrum quadrupole at redshifts z ≳ 2.5.


2019 ◽  
Vol 485 (4) ◽  
pp. 5059-5072 ◽  
Author(s):  
Phoebe Upton Sanderbeck ◽  
Vid Iršič ◽  
Matthew McQuinn ◽  
Avery Meiksin

ABSTRACT Spatial fluctuations in ultraviolet backgrounds can subtly modulate the distribution of extragalactic sources, a potential signal and systematic for large-scale structure surveys. While this modulation has been shown to be significant for 3D Ly α forest surveys, its relevance for other large-scale structure probes has been hardly explored, despite being the only astrophysical process that likely can affect clustering measurements on the scales of ≳Mpc. We estimate that the background fluctuations, modulating the amount of H i, have a fractional effect of (0.03–0.3) × (k/[10−2 Mpc−1])−1 on the power spectrum of 21 cm intensity maps at z = 1–3. We find a smaller effect for H α and Ly α intensity mapping surveys of (0.001–0.1) × (k/[10−2 Mpc−1])−1 and even smaller effect for more traditional surveys that correlate the positions of individual H α or Ly α emitters. We also estimate the effect of backgrounds on low-redshift galaxy surveys in general based on a simple model in which background fluctuations modulate the rate halo gas cools, modulating star formation: We estimate a maximum fractional effect on the power of ∼0.01 (k/[10−2 Mpc−1])−1 at z = 1. We compare sizes of these imprints to cosmological parameter benchmarks for the next generation of redshift surveys: We find that ionizing backgrounds could result in a bias on the squeezed triangle non-Gaussianity parameter fNL that can be larger than unity for power spectrum measurements with a SPHEREx-like galaxy survey, and typical values of intensity bias. Marginalizing over a shape of the form k−1PL, where PL is the linear matter power spectrum, removes much of this bias at the cost of ${\approx } 40{{\ \rm per\ cent}}$ larger statistical errors.


1983 ◽  
Vol 104 ◽  
pp. 175-175
Author(s):  
J. Bean ◽  
G. Efstathiou ◽  
R. S. Ellis ◽  
B. A. Peterson ◽  
T. Shanks ◽  
...  

The aim of the survey is to sample a relatively large, randomly chosen volume of the Universe in order to study the large-scale distribution of galaxies using the two-point correlation function, the peculiar velocities between galaxy pairs and to provide an estimate of the galaxian luminosity function that is unaffected by density inhomogeneities and Virgo infall.


2004 ◽  
Vol 217 ◽  
pp. 114-115
Author(s):  
L. Montier ◽  
M. Giard

Recent observations at low and high redshift seem to confirm the presence of dust at very low abundances in the InterGalactic Medium (IGM) and especially in the IntraCluster Medium (ICM). We have studied the impact of this dust on the IGM, in terms of heating and cooling. on one hand, with an analytical model of dust emission, we have proved that the dust can be considered as the dominant cooling agent of the ICM at large scale, when the temperature is greater than T = 107 K. on the other hand, with a strong UV Background and a low temperature (Te ≤ 105 K), dust grains become an efficient heating agent of the IGM. These two opposite effects may have played an important role regarding structure formation of the Universe at large and small scales.


2014 ◽  
Vol 11 (S308) ◽  
pp. 368-371
Author(s):  
Jukka Nevalainen ◽  
L. J. Liivamägi ◽  
E. Tempel ◽  
E. Branchini ◽  
M. Roncarelli ◽  
...  

AbstractWe have developed a new method to approach the missing baryons problem. We assume that the missing baryons reside in a form of Warm Hot Intergalactic Medium, i.e. the WHIM. Our method consists of (a) detecting the coherent large scale structure in the spatial distribution of galaxies that traces the Cosmic Web and that in hydrodynamical simulations is associated to the WHIM, (b) mapping its luminosity into a galaxy luminosity density field, (c) using numerical simulations to relate the luminosity density to the density of the WHIM, (d) applying this relation to real data to trace the WHIM using the observed galaxy luminosities in the Sloan Digital Sky Survey and 2dF redshift surveys. In our application we find evidence for the WHIM along the line of sight to the Sculptor Wall, at redshifts consistent with the recently reported X-ray absorption line detections. Our indirect WHIM detection technique complements the standard method based on the detection of characteristic X-ray absorption lines, showing that the galaxy luminosity density is a reliable signpost for the WHIM. For this reason, our method could be applied to current galaxy surveys to optimise the observational strategies for detecting and studying the WHIM and its properties. Our estimates of the WHIM hydrogen column density NH in Sculptor agree with those obtained via the X-ray analysis. Due to the additional NH estimate, our method has potential for improving the constrains of the physical parameters of the WHIM as derived with X-ray absorption, and thus for improving the understanding of the missing baryons problem.


2020 ◽  
Vol 637 ◽  
pp. A18 ◽  
Author(s):  
Tony Bonnaire ◽  
Nabila Aghanim ◽  
Aurélien Decelle ◽  
Marian Douspis

Numerical simulations and observations show that galaxies are not uniformly distributed in the universe but, rather, they are spread across a filamentary structure. In this large-scale pattern, highly dense regions are linked together by bridges and walls, all of them surrounded by vast, nearly-empty areas. While nodes of the network are widely studied in the literature, simulations indicate that half of the mass budget comes from a more diffuse part of the network, which is made up of filaments. In the context of recent and upcoming large galaxy surveys, it becomes essential that we identify and classify features of the Cosmic Web in an automatic way in order to study their physical properties and the impact of the cosmic environment on galaxies and their evolution. In this work, we propose a new approach for the automatic retrieval of the underlying filamentary structure from a 2D or 3D galaxy distribution using graph theory and the assumption that paths that link galaxies together with the minimum total length highlight the underlying distribution. To obtain a smoothed version of this topological prior, we embedded it in a Gaussian mixtures framework. In addition to a geometrical description of the pattern, a bootstrap-like estimate of these regularised minimum spanning trees allowed us to obtain a map characterising the frequency at which an area of the domain is crossed. Using the distribution of halos derived from numerical simulations, we show that the proposed method is able to recover the filamentary pattern in a 2D or 3D distribution of points with noise and outliers robustness with a few comprehensible parameters.


Sign in / Sign up

Export Citation Format

Share Document