scholarly journals Detecting episodes of star formation using Bayesian model selection

2021 ◽  
Vol 502 (3) ◽  
pp. 3993-4008
Author(s):  
Andrew J Lawler ◽  
Viviana Acquaviva

ABSTRACT Bayesian model comparison frameworks can be used when fitting models to data in order to infer the appropriate model complexity in a data-driven manner. We aim to use them to detect the correct number of major episodes of star formation from the analysis of the spectral energy distributions (SEDs) of galaxies, modelled after 3D-HST galaxies at z ∼ 1. Starting from the published stellar population properties of these galaxies, we use kernel density estimates to build multivariate input parameter distributions to obtain realistic simulations. We create simulated sets of spectra of varying degrees of complexity (identified by the number of parameters), and derive SED fitting results and pieces of evidence for pairs of nested models, including the correct model as well as more simplistic ones, using the bagpipes codebase with nested sampling algorithm multinest. We then ask the question: is it true – as expected in Bayesian model comparison frameworks – that the correct model has larger evidence? Our results indicate that the ratio of pieces of evidence (the Bayes factor) is able to identify the correct underlying model in the vast majority of cases. The quality of the results improves primarily as a function of the total S/N in the SED. We also compare the Bayes factors obtained using the evidence to those obtained via the Savage–Dickey density ratio (SDDR), an analytic approximation that can be calculated using samples from regular Markov Chain Monte Carlo methods. We show that the SDDR ratio can satisfactorily replace a full evidence calculation provided that the sampling density is sufficient.

2012 ◽  
Vol 8 (S295) ◽  
pp. 312-312
Author(s):  
Yunkun Han ◽  
Zhanwen Han

AbstractIn Han & Han (2012), we have preliminarily built BayeSED and applied it to a sample of hyperluminous infrared galaxies. The physically reasonable results obtained from Bayesian model comparison and parameter estimation show that BayeSED could be a useful tool for understanding the nature of complex systems, such as dust obscured starburst-AGN composite galaxies, from decoding their complex SEDs. In this contribution, we present a more rigorous test of BayeSED by making a mock catalog from model SEDs with the value of all parameters to be known in advance.


2019 ◽  
Vol 15 (S341) ◽  
pp. 143-146
Author(s):  
Yunkun Han ◽  
Zhanwen Han ◽  
Lulu Fan

AbstractFitting the multi-wavelength spectral energy distributions (SEDs) of galaxies is a widely used technique to extract information about the physical properties of galaxies. However, a major difficulty lies in the numerous uncertainties regarding almost all ingredients of the SED modeling of galaxies. The Bayesian methods provide a consistent conceptual basis for dealing with the problem of inference with many uncertainties. While the Bayesian parameter estimation method have become quite popular in the field of SED fitting of galaxies, the Bayesian model comparison method, which is based on the same Bayes’ rule, is still not widely used in this field. With the application of Bayesian model comparison method in a series of papers, we show that the results obtained with Bayesian model comparison are understandable in the context of stellar/galaxy physics. These results indicate that Bayesian model comparison is a reliable and very powerful method for the SED fitting of galaxies.


2014 ◽  
pp. 101-117
Author(s):  
Michael D. Lee ◽  
Eric-Jan Wagenmakers

2018 ◽  
Vol 265 ◽  
pp. 271-278 ◽  
Author(s):  
Tyler B. Grove ◽  
Beier Yao ◽  
Savanna A. Mueller ◽  
Merranda McLaughlin ◽  
Vicki L. Ellingrod ◽  
...  

2021 ◽  
Author(s):  
John K. Kruschke

In most applications of Bayesian model comparison or Bayesian hypothesis testing, the results are reported in terms of the Bayes factor only, not in terms of the posterior probabilities of the models. Posterior model probabilities are not reported because researchers are reluctant to declare prior model probabilities, which in turn stems from uncertainty in the prior. Fortunately, Bayesian formalisms are designed to embrace prior uncertainty, not ignore it. This article provides a novel derivation of the posterior distribution of model probability, and shows many examples. The posterior distribution is useful for making decisions taking into account the uncertainty of the posterior model probability. Benchmark Bayes factors are provided for a spectrum of priors on model probability. R code is posted at https://osf.io/36527/. This framework and tools will improve interpretation and usefulness of Bayes factors in all their applications.


2017 ◽  
Vol 70 ◽  
pp. 84-93 ◽  
Author(s):  
R. Wesley Henderson ◽  
Paul M. Goggans ◽  
Lei Cao

2018 ◽  
Author(s):  
Julia M. Haaf ◽  
Fayette Klaassen ◽  
Jeffrey Rouder

Most theories in the social sciences are verbal and provide ordinal-level predictions for data. For example, a theory might predict that performance is better in one condition than another, but not by how much. One way of gaining additional specificity is to posit many ordinal constraints that hold simultaneously. For example a theory might predict an effect in one condition, a larger effect in another, and none in a third. We show how common theoretical positions naturally lead to multiple ordinal constraints. To assess whether multiple ordinal constraints hold in data, we adopt a Bayesian model comparison approach. The result is an inferential system that is custom-tuned for the way social scientists conceptualize theory, and that is more intuitive and informative than current linear-model approaches.


Sign in / Sign up

Export Citation Format

Share Document