scholarly journals Asteroseismic fingerprints of stellar mergers

Author(s):  
Nicholas Z Rui ◽  
Jim Fuller

Abstract Stellar mergers are important processes in stellar evolution, dynamics, and transient science. However, it is difficult to identify merger remnant stars because they cannot easily be distinguished from single stars based on their surface properties. We demonstrate that merger remnants can potentially be identified through asteroseismology of red giant stars using measurements of the gravity mode period spacing together with the asteroseismic mass. For mergers that occur after the formation of a degenerate core, remnant stars have over-massive envelopes relative to their cores, which is manifested asteroseismically by a g mode period spacing smaller than expected for the star’s mass. Remnants of mergers which occur when the primary is still on the main sequence or whose total mass is less than ≈2 M⊙ are much harder to distinguish from single stars. Using the red giant asteroseismic catalogs of Vrard et al. (2016) and Yu et al. (2018), we identify 24 promising candidates for merger remnant stars. In some cases, merger remnants could also be detectable using only their temperature, luminosity, and asteroseismic mass, a technique that could be applied to a larger population of red giants without a reliable period spacing measurement.

2019 ◽  
Vol 621 ◽  
pp. A66 ◽  
Author(s):  
P. Eggenberger ◽  
S. Deheuvels ◽  
A. Miglio ◽  
S. Ekström ◽  
C. Georgy ◽  
...  

Context. The observations of solar-like oscillations in evolved stars have brought important constraints on their internal rotation rates. To correctly reproduce these data, an efficient transport mechanism is needed in addition to the transport of angular momentum by meridional circulation and shear instability. The efficiency of this undetermined process is found to increase both with the mass and the evolutionary stage during the red giant phase. Aims. We study the efficiency of the transport of angular momentum during the subgiant phase. Methods. The efficiency of the unknown transport mechanism is determined during the subgiant phase by comparing rotating models computed with an additional corresponding viscosity to the asteroseismic measurements of both core and surface-rotation rates for six subgiants observed by the Kepler spacecraft. We then investigate the change in the efficiency of this transport of angular momentum with stellar mass and evolution during the subgiant phase. Results. The precise asteroseismic measurements of both core and surface-rotation rates available for the six Kepler targets enable a precise determination of the efficiency of the transport of angular momentum needed for each of these subgiants. These results are found to be insensitive to all the uncertainties related to the modelling of rotational effects before the post-main sequence (poMS) phase. An interesting exception in this context is the case of young subgiants (typical values of log(g) close to 4), because their rotational properties are sensitive to the degree of radial differential rotation on the main sequence (MS). These young subgiants constitute therefore perfect targets to constrain the transport of angular momentum on the MS from asteroseismic observations of evolved stars. As for red giants, we find that the efficiency of the additional transport process increases with the mass of the star during the subgiant phase. However, the efficiency of this undetermined mechanism decreases with evolution during the subgiant phase, contrary to what is found for red giants. Consequently, a transport process with an efficiency that increases with the degree of radial differential rotation cannot account for the core-rotation rates of subgiants, while it correctly reproduces the rotation rates of red giant stars. This suggests that the physical nature of the additional mechanism needed for the internal transport of angular momentum may be different in subgiant and red giant stars.


1986 ◽  
Vol 116 ◽  
pp. 513-514
Author(s):  
Cesare Chiosi ◽  
Luisa Pigatto

Deep CCD photometry of the star clusters NGC2162 and NGC2190 in LMC presented by Schommer et al. (1984) is used togheter with new evolutionary models computed by Bertelli et al. (1985a) which take into account overshooting from convective cores, to derive the clusters ages and the distance modulus of LMC. A preliminary analysis of the two clusters indicates that NGC 2162 and NGC 2190 belong to the same class of clusters discussed by Barbaro and Pigatto (1984). In fact, for the turn-off mass estimated by means of classical models (<2.2m⊙) these clusters should possess an extended red giant branch and a bimodal distribution of red stars (cifr. Fig.2). On the contrary they show a clump of red stars. This means that ages and other properties derived from classical models for this range of masses, may not correspond to reality. With the new models, stars of mass as low as 1.6 m⊙, ignite helium in non degenerate conditions, avoid the long lived RG phase, and burn helium as more massive stars. As consequence of it, a clump of red giants is expected. In Fig.1, we show new isochrones (Bertelli et al. 1985b) derived from models with overshooting, overlaid to the CM diagram of NGC 2162. Theoretical luminosities and Teff's are converted into Mv:(B-V)o plane by means of Teff:(B-V):BC scales based on models atmospheres collected from several authors (Chiosi, 1985). At any given age, the new isochrones run brighter than those of Ciardullo and Demarque (1977). By means of the luminosity function, a method more objective (Paczsynski, 1984) than the standard one of ZAMS and/or isochrone fitting, with a reddening of E(B-V)=0.06 and chemical composition X=0.700 and Z=0.02, we find ages of 1 109yr and a true distance modulus of (m-M)O=18.6 instead of 18.2±0.2 mag given by Schommer et al.(1984). Fig.2 shows the theoretical luminosity function at age 1 109yr, (age preliminarly assigned to the clusters by isochrone fitting) for main sequence and red giant stars obtained with Salpeter's IMF (top panel), compares it with the correspondent one of Ciardullo and Demarque(1977), and finally shows the observational LF we derive from stars counts(bottom panel) for NGC 2162. By imposing coincidence between theoretical and observational LF's at the side of main sequence fall-off and rising of the red giant clump, we derive the distance modulus (m-M)O=18.6. In conclusions, models with overshooting not only interpret the morphology of this class of clusters, but assigne LMC a distance modulus in agreement with other independent determinations (Walker, 1984; Visvanathan, 1985).


2009 ◽  
Vol 5 (S268) ◽  
pp. 301-309
Author(s):  
Verne V. Smith

AbstractConnections between observations of the lithium abundance in various types of red giants and stellar evolution are discussed here. The emphasis is on three main topics; 1) the depletion of Li as stars ascend the red giant branch for the first time, 2) the synthesis of 7Li in luminous and massive asymptotic giant branch stars via the mechanism of hot-bottom burning, and 3) the possible multiple sources of excess Li abundances found in a tiny fraction of various types of G and K giants.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 525-528
Author(s):  
Lagarde Nadège

AbstractThe availability of asteroseismic constraints for a large sample of red-giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. We use a detailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al. 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. This study is already published in Lagarde et al. (2015)


2020 ◽  
Vol 635 ◽  
pp. A164 ◽  
Author(s):  
V. Silva Aguirre ◽  
J. Christensen-Dalsgaard ◽  
S. Cassisi ◽  
M. Miller Bertolami ◽  
A. Serenelli ◽  
...  

Context. With the advent of space-based asteroseismology, determining accurate properties of red-giant stars using their observed oscillations has become the focus of many investigations due to their implications in a variety of fields in astrophysics. Stellar models are fundamental in predicting quantities such as stellar age, and their reliability critically depends on the numerical implementation of the physics at play in this evolutionary phase. Aims. We introduce the Aarhus red giants challenge, a series of detailed comparisons between widely used stellar evolution and oscillation codes that aim to establish the minimum level of uncertainties in properties of red giants arising solely from numerical implementations. We present the first set of results focusing on stellar evolution tracks and structures in the red-giant-branch (RGB) phase. Methods. Using nine state-of-the-art stellar evolution codes, we defined a set of input physics and physical constants for our calculations and calibrated the convective efficiency to a specific point on the main sequence. We produced evolutionary tracks and stellar structure models at a fixed radius along the red-giant branch for masses of 1.0 M⊙, 1.5 M⊙, 2.0 M⊙, and 2.5 M⊙, and compared the predicted stellar properties. Results. Once models have been calibrated on the main sequence, we find a residual spread in the predicted effective temperatures across all codes of ∼20 K at solar radius and ∼30–40 K in the RGB regardless of the considered stellar mass. The predicted ages show variations of 2–5% (increasing with stellar mass), which we attribute to differences in the numerical implementation of energy generation. The luminosity of the RGB-bump shows a spread of about 10% for the considered codes, which translates into magnitude differences of ∼0.1 mag in the optical V-band. We also compare the predicted [C/N] abundance ratio and find a spread of 0.1 dex or more for all considered masses. Conclusions. Our comparisons show that differences at the level of a few percent still remain in evolutionary calculations of red giants branch stars despite the use of the same input physics. These are mostly due to differences in the energy generation routines and interpolation across opacities, and they call for further investigation on these matters in the context of using properties of red giants as benchmarks for astrophysical studies.


1986 ◽  
Vol 116 ◽  
pp. 513-514
Author(s):  
Cesare Chiosi ◽  
Luisa Pigatto

Deep CCD photometry of the star clusters NGC2162 and NGC2190 in LMC presented by Schommer et al. (1984) is used togheter with new evolutionary models computed by Bertelli et al. (1985a) which take into account overshooting from convective cores, to derive the clusters ages and the distance modulus of LMC. A preliminary analysis of the two clusters indicates that NGC 2162 and NGC 2190 belong to the same class of clusters discussed by Barbaro and Pigatto (1984). In fact, for the turn-off mass estimated by means of classical models (<2.2mO) these clusters should possess an extended red giant branch and a bimodal distribution of red stars (cifr. Fig.2). On the contrary they show a clump of red stars. This means that ages and other properties derived from classical models for this range of masses, may not correspond to reality. With the new models, stars of mass as low as 1.6 mO, ignite helium in non degenerate conditions, avoid the long lived RG phase, and burn helium as more massive stars. As consequence of it, a clump of red giants is expected. In Fig.1, we show new isochrones (Bertelli et al. 1985b) derived from models with overshooting, overlaid to the CM diagram of NGC 2162. Theoretical luminosities and Teff's are converted into Mv:(B-V)o plane by means of Teff:(B-V):BC scales based on models atmospheres collected from several authors (Chiosi, 1985). At any given age, the new isochrones run brighter than those of Ciardullo and Demarque (1977). By means of the luminosity function, a method more objective (Paczsynski, 1984) than the standard one of ZAMS and/or isochrone fitting, with a reddening of E(B-V)=0.06 and chemical composition X=0.700 and Z=0.02, we find ages of 1 109yr and a true distance modulus of (m-M)O=18.6 instead of 18.2±0.2 mag given by Schommer et al.(1984). Fig.2 shows the theoretical luminosity function at age 1 109yr, (age preliminarly assigned to the clusters by isochrone fitting) for main sequence and red giant stars obtained with Salpeter's IMF (top panel), compares it with the correspondent one of Ciardullo and Demarque(1977), and finally shows the observational LF we derive from stars counts(bottom panel) for NGC 2162. By imposing coincidence between theoretical and observational LF's at the side of main sequence fall-off and rising of the red giant clump, we derive the distance modulus (m-M)O=18.6. In conclusions, models with overshooting not only interpret the morphology of this class of clusters, but assigne LMC a distance modulus in agreement with other independent determinations (Walker, 1984; Visvanathan, 1985).


Author(s):  
Graeme H. Smith

AbstractIt is shown that upon combining GALEX far-ultraviolet and Johnson B magnitudes a resultant FUV–B colour can be obtained that for red giant stars of luminosity classes III and II correlates well with chromospheric emission in the cores of the Mg iih and k lines. Giant stars throughout the colour range 0.8 ≤ B – V ≤ 1.6 exhibit such a phenomenon. The main result of this paper is to show that GALEX far-ultraviolet photometry can provide information about the degree of chromospheric activity among red giant stars, and as such may offer a tool for surveying the evolution of chromospheric activity from the main sequence into the red giant phases of stellar evolution.


2018 ◽  
Vol 616 ◽  
pp. A94 ◽  
Author(s):  
M. Vrard ◽  
T. Kallinger ◽  
B. Mosser ◽  
C. Barban ◽  
F. Baudin ◽  
...  

Context. The space-borne missions CoRoT and Kepler have provided photometric observations of unprecedented quality. The study of solar-like oscillations observed in red giant stars by these satellites allows a better understanding of the different physical processes occurring in their interiors. In particular, the study of the mode excitation and damping is a promising way to improve our understanding of stellar physics that has, so far, been performed only on a limited number of targets. Aims. The recent asteroseismic characterization of the evolutionary status for a large number of red giants allows us to study the physical processes acting in the interior of red giants and how they are modified during stellar evolution. In this work, we aim to obtain information on the excitation and damping of pressure modes through the measurement of the stars’ pressure mode widths and amplitudes and to analyze how they are modified with stellar evolution. The objective is to bring observational constraints on the modeling of the physical processes behind mode excitation and damping. Methods. We fit the frequency spectra of red giants with well-defined evolutionary status using Lorentzian functions to derive the pressure mode widths and amplitudes. To strengthen our conclusions, we used two different fitting techniques. Results. Pressure mode widths and amplitudes were determined for more than 5000 red giants. With a stellar sample two orders of magnitude larger than previous results, we confirmed that the mode width depends on stellar evolution and varies with stellar effective temperature. In addition, we discovered that the mode width depends on stellar mass. We also confirmed observationally the influence of the stellar metallicity on the mode amplitudes, as predicted by models.


2003 ◽  
Vol 208 ◽  
pp. 445-446 ◽  
Author(s):  
Masaaki Shimada ◽  
Masayuki Y. Fujimoto ◽  
Shimako Yamada ◽  
Daiichiro Sugimoto

In most of globular clusters, surface abundance anomalies are observed not only from red giant stars but also from main sequence stars. We discuss the possibility that the latter anomalies can be explained in terms the pollution due to mass transfer during close encounters with red giants, the latter of which have already developed the anomalies through their internal processes. If this is the case, the main sequence stars with the abundance anomalies may serve as a probe into the star-star interactions in dense cores of globular clusters.


2020 ◽  
Vol 497 (1) ◽  
pp. 1008-1014
Author(s):  
G Dréau ◽  
M S Cunha ◽  
M Vrard ◽  
P P Avelino

ABSTRACT The space-borne missions CoRoT and Kepler have revealed numerous mixed modes in red giant stars. These modes carry a wealth of information about red giant cores, but are of limited use when constraining rapid structural variations in their envelopes. This limitation can be circumvented if we have access to the frequencies of the pure acoustic dipolar modes in red giants, i.e. the dipole modes that would exist in the absence of coupling between gravity and acoustic waves. We present a pilot study aimed at evaluating the implications of using these pure acoustic mode frequencies in seismic studies of the helium structural variation in red giants. The study is based on artificial seismic data for a red giant branch stellar model, bracketing seven acoustic dipole radial orders around νmax. The pure acoustic dipole-mode frequencies are derived from a fit to the mixed-mode period spacings and then used to compute the pure acoustic dipole-mode second differences. The pure acoustic dipole-mode second differences inferred through this procedure follow the same oscillatory function as the radial-mode second differences. The additional constraints brought by the dipolar modes allow us to adopt a more complete description of the glitch signature when performing the fit to the second differences. The amplitude of the glitch retrieved from this fit is 15${{\ \rm per\ cent}}$ smaller than that from the fit based on the radial modes alone. Also, we find that thanks to the additional constraints, a bias in the inferred glitch location, found when adopting the simpler description of the glitch, is avoided.


Sign in / Sign up

Export Citation Format

Share Document