red giant stars
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 27)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Vol 21 (12) ◽  
pp. 319
Author(s):  
Ruo-Yi Zhang ◽  
Hai-Bo Yuan ◽  
Xiao-Wei Liu ◽  
Mao-Sheng Xiang ◽  
Yang Huang ◽  
...  

Abstract In the fourth paper of this series, we present the metallicity-dependent Sloan Digital Sky Survey (SDSS) stellar color loci of red giant stars, using a spectroscopic sample of red giants in the SDSS Stripe 82 region. The stars span a range of 0.55 – 1.2 mag in color g – i, –0.3 – –2.5 in metallicity [Fe/H], and have values of surface gravity log g smaller than 3.5 dex. As in the case of main-sequence (MS) stars, the intrinsic widths of loci of red giants are also found to be quite narrow, a few mmag at maximum. There are however systematic differences between the metallicity-dependent stellar loci of red giants and MS stars. The colors of red giants are less sensitive to metallicity than those of MS stars. With good photometry, photometric metallicities of red giants can be reliably determined by fitting the u – g, g – r, r – i, and i – z colors simultaneously to an accuracy of 0.2 – 0.25 dex, comparable to the precision achievable with low-resolution spectroscopy for a signal-to-noise ratio of 10. By comparing fitting results to the stellar loci of red giants and MS stars, we propose a new technique to discriminate between red giants and MS stars based on the SDSS photometry. The technique achieves completeness of ∼70 per cent and efficiency of ∼80 per cent in selecting metal-poor red giant stars of [Fe/H] ≤ –1.2. It thus provides an important tool to probe the structure and assemblage history of the Galactic halo using red giant stars.


2021 ◽  
Vol 916 (2) ◽  
pp. 88
Author(s):  
Samuel K. Grunblatt ◽  
Joel C. Zinn ◽  
Adrian M. Price-Whelan ◽  
Ruth Angus ◽  
Nicholas Saunders ◽  
...  

2021 ◽  
Vol 911 (2) ◽  
pp. L22
Author(s):  
I. Soszyński ◽  
A. Olechowska ◽  
M. Ratajczak ◽  
P. Iwanek ◽  
D. M. Skowron ◽  
...  

2021 ◽  
Vol 161 (3) ◽  
pp. 128
Author(s):  
Christopher Sneden ◽  
Melike Afşar ◽  
Zeynep Bozkurt ◽  
Gamze Böcek Topcu ◽  
Sergen Özdemir ◽  
...  

2020 ◽  
Vol 644 ◽  
pp. A166
Author(s):  
O. Straniero ◽  
C. Pallanca ◽  
E. Dalessandro ◽  
I. Domínguez ◽  
F. R. Ferraro ◽  
...  

Context. The production of neutrinos by plasma oscillations is the most important energy sink process operating in the degenerate core of low-mass red giant stars. This process counterbalances the release of energy induced by nuclear reactions and gravitational contraction, and determines the luminosity attained by a star at the moment of the He ignition. This occurrence coincides with the tip of the red giant branch (RGB), whose luminosity is extensively used as a calibrated standard candle in several cosmological studies. Aims. We aim to investigate the possible activation of additional energy sink mechanisms, as predicted by many extensions of the so-called Standard Model. In particular, our objective is to test the possible production of axions or axion-like particles, mainly through their coupling with electrons. Methods. By combining Hubble Space Telescope and ground-based optical and near-infrared photometric samples, we derived the RGB tip absolute magnitude of 22 galactic globular clusters (GGCs). The effects of varying the distance and the metallicity scales were also investigated. Then we compared the observed tip luminosities with those predicted by state-of-the-art stellar models that include the energy loss due to the axion production in the degenerate core of red giant stars. Results. We find that theoretical predictions including only the energy loss by plasma neutrinos are, in general, in good agreement with the observed tip bolometric magnitudes, even though the latter are ∼0.04 mag brighter on average. This small shift may be the result of systematic errors affecting the evaluation of the RGB tip bolometric magnitudes, or, alternatively, it could be ascribed to an axion-electron coupling causing a non-negligible thermal production of axions. In order to estimate the strength of this possible axion sink, we performed a cumulative likelihood analysis using the RGB tips of the whole set of 22 GGCs. All the possible sources of uncertainties affecting both the measured bolometric magnitudes and the corresponding theoretical predictions were carefully considered. As a result, we find that the value of the axion-electron coupling parameter that maximizes the likelihood probability is gae/10−13 ∼ 0.60−0.58+0.32. This hint is valid, however, if the dominant energy sinks operating in the core of red giant stars are standard neutrinos and axions coupled with electrons. Any additional energy-loss process, not included in the stellar models, would reduce such a hint. Nevertheless, we find that values gae/10−13 >  1.48 can be excluded with 95% confidence. Conclusions. The new bound we find represents the most stringent constraint for the axion-electron coupling available so far. The new scenario that emerges after this work represents a greater challenge for future experimental axion searches. In particular, we can exclude that the recent signal seen by the XENON1T experiment was due to solar axions.


2020 ◽  
pp. 197-208
Author(s):  
B. Mosser ◽  
A. Miglio

2020 ◽  
Vol 642 ◽  
pp. A197
Author(s):  
B. Dias ◽  
M. C. Parisi

Context. The line strength of the near-infrared Ca II triplet (CaT) lines are a proxy for measuring metallicity from integrated and individual stellar spectra of bright red giant stars. In the latter case it is a mandatory step to remove the magnitude (proxy for gravity, temperature, and luminosity) dependence from the equivalent width (EW) of the lines before converting them into metallicities. For decades the working empirical procedure has been to use the relative magnitude with respect to the horizontal branch level or red clump, with the advantage that it is independent from distance and extinction. Aims. The V filter is broadly adopted as the reference magnitude, although a few works have used different filters (I and Ks, for example). In this work we investigate the dependence of the CaT calibration using the griz filters from the Dark Energy Camera (DECam) and the Gemini Multi-Object Spectrograph (GMOS), the G filter from Gaia, the BVI filters from the Magellanic Clouds photometric survey (MCPS), and the YJKs filters from the Visible and Infrared Survey Telescope for Astronomy (VISTA) InfraRed CAMera (VIRCAM). We use as a reference the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) V filter used in the original analysis of the sample. Methods. Red giant stars from clusters with known metallicity and available CaT EWs were used as reference. Public photometric catalogues were taken from the Survey of the MAgellanic Stellar History (SMASH) second data release, VISTA survey of the Magellanic Clouds system (VMC), Gaia, MCPS surveys, plus VIsible Soar photometry of star Clusters in tApi’i and Coxi HuguA (VISCACHA) GMOS data, for a selection of Small Magellanic Cloud clusters. The slopes were fitted using two and three lines to be applicable to most of the metallicity scales. Results. The magnitude dependence of the CaT EWs is well described by a linear relation using any filter analysed in this work. The slope increases with wavelength of the filters. The zero point (i.e. reduced EW), which is the metallicity indicator, remains the same. Conclusions. If the same line profile function is used with the same bandpasses and continuum regions, and the total EW comes from the same number of lines (2 or 3), then the reduced EW is the same regardless the filter used. Therefore, any filter can be used to convert the CaT equivalent widths into metallicity for a given CaT calibration.


2020 ◽  
Vol 497 (1) ◽  
pp. 167-172
Author(s):  
C Jiang ◽  
M Cunha ◽  
J Christensen-Dalsgaard ◽  
Q S Zhang

2020 ◽  
Vol 497 (1) ◽  
pp. 1008-1014
Author(s):  
G Dréau ◽  
M S Cunha ◽  
M Vrard ◽  
P P Avelino

ABSTRACT The space-borne missions CoRoT and Kepler have revealed numerous mixed modes in red giant stars. These modes carry a wealth of information about red giant cores, but are of limited use when constraining rapid structural variations in their envelopes. This limitation can be circumvented if we have access to the frequencies of the pure acoustic dipolar modes in red giants, i.e. the dipole modes that would exist in the absence of coupling between gravity and acoustic waves. We present a pilot study aimed at evaluating the implications of using these pure acoustic mode frequencies in seismic studies of the helium structural variation in red giants. The study is based on artificial seismic data for a red giant branch stellar model, bracketing seven acoustic dipole radial orders around νmax. The pure acoustic dipole-mode frequencies are derived from a fit to the mixed-mode period spacings and then used to compute the pure acoustic dipole-mode second differences. The pure acoustic dipole-mode second differences inferred through this procedure follow the same oscillatory function as the radial-mode second differences. The additional constraints brought by the dipolar modes allow us to adopt a more complete description of the glitch signature when performing the fit to the second differences. The amplitude of the glitch retrieved from this fit is 15${{\ \rm per\ cent}}$ smaller than that from the fit based on the radial modes alone. Also, we find that thanks to the additional constraints, a bias in the inferred glitch location, found when adopting the simpler description of the glitch, is avoided.


2020 ◽  
Vol 639 ◽  
pp. A63
Author(s):  
Patrick Gaulme ◽  
Jason Jackiewicz ◽  
Federico Spada ◽  
Drew Chojnowski ◽  
Benoît Mosser ◽  
...  

Oscillating red-giant stars have provided a wealth of asteroseismic information regarding their interiors and evolutionary states, which enables detailed studies of the Milky Way. The objective of this work is to determine what fraction of red-giant stars shows photometric rotational modulation, and understand its origin. One of the underlying questions is the role of close binarity in this population, which relies on the fact that red giants in short-period binary systems (less than 150 days or so) have been observed to display strong rotational modulation. We selected a sample of about 4500 relatively bright red giants observed by Kepler, and show that about 370 of them (∼8%) display rotational modulation. Almost all have oscillation amplitudes below the median of the sample, while 30 of them are not oscillating at all. Of the 85 of these red giants with rotational modulation chosen for follow-up radial-velocity observation and analysis, 34 show clear evidence of spectroscopic binarity. Surprisingly, 26 of the 30 nonoscillators are in this group of binaries. On the contrary, about 85% of the active red giants with detectable oscillations are not part of close binaries. With the help of the stellar masses and evolutionary states computed from the oscillation properties, we shed light on the origin of their activity. It appears that low-mass red-giant branch stars tend to be magnetically inactive, while intermediate-mass ones tend to be highly active. The opposite trends are true for helium-core burning (red clump) stars, whereby the lower-mass clump stars are comparatively more active and the higher-mass ones are less active. In other words, we find that low-mass red-giant branch stars gain angular momentum as they evolve to clump stars, while higher-mass ones lose angular momentum. The trend observed with low-mass stars leads to possible scenarios of planet engulfment or other merging events during the shell-burning phase. Regarding intermediate-mass stars, the rotation periods that we measured are long with respect to theoretical expectations reported in the literature, which reinforces the existence of an unidentified sink of angular momentum after the main sequence. This article establishes strong links between rotational modulation, tidal interactions, (surface) magnetic fields, and oscillation suppression. There is a wealth of physics to be studied in these targets that is not available in the Sun.


Sign in / Sign up

Export Citation Format

Share Document