scholarly journals Constraining the Milky Way’s ultraviolet to infrared SED with Gaussian Process Regression

Author(s):  
Catherine E Fielder ◽  
Jeffrey A Newman ◽  
Brett H Andrews ◽  
Gail Zasowski ◽  
Nicholas F Boardman ◽  
...  

Abstract Improving our knowledge of global Milky Way (MW) properties is critical for connecting the detailed measurements only possible from within our Galaxy to our understanding of the broader galaxy population. We here train Gaussian Process Regression (GPR) models on SDSS galaxies to map from galaxy properties (stellar mass, apparent axial ratio, star formation rate, bulge-to-total ratio, disk scale length, and bar vote fraction) to UV (GALEX FUV/NUV), optical (SDSS ugriz) and IR (2MASS JHKs and WISE W1/W2/W3/W4) fluxes and uncertainties. With these models we estimate the photometric properties of the MW, resulting in a full UV-to-IR spectral energy distribution (SED) as it would be measured externally, viewed face-on. We confirm that the Milky Way lies in the green valley in optical diagnostic diagrams, but show for the first time that the MW is in the star-forming region in standard UV and IR diagnostics—characteristic of the population of red spiral galaxies. Although our GPR method predicts one band at a time, the resulting MW UV–IR SED is consistent with SEDs of local spirals with characteristics broadly similar to the MW, suggesting that these independent predictions can be combined reliably. Our UV–IR SED will be invaluable for reconstructing the MW’s star formation history using the same tools employed for external galaxies, allowing comparisons of results from in situ measurements to those from the methods used for extra-galactic objects.

2020 ◽  
Vol 500 (3) ◽  
pp. 3240-3253
Author(s):  
Amanda R Lopes ◽  
Eduardo Telles ◽  
Jorge Melnick

ABSTRACT We discuss the implications of assuming different star formation histories (SFH) in the relation between star formation rate (SFR) and mass derived by the spectral energy distribution fitting (SED). Our analysis focuses on a sample of H ii galaxies, dwarf starburst galaxies spectroscopically selected through their strong narrow emission lines in SDSS DR13 at z < 0.4, cross-matched with photometric catalogues from GALEX, SDSS, UKIDSS, and WISE. We modelled and fitted the SEDs with the code CIGALE adopting different descriptions of SFH. By adding information from different independent studies, we find that H ii galaxies are best described by episodic SFHs including an old (10 Gyr), an intermediate age (100−1000 Myr) and a recent population with ages < 10 Myr. H ii galaxies agree with the SFR−M* relation from local star-forming galaxies, and only lie above such relation when the current SFR is adopted as opposed to the average over the entire SFH. The SFR−M* demonstrated not to be a good tool to provide additional information about the SFH of H ii galaxies, as different SFH present a similar behaviour with a spread of <0.1 dex.


2018 ◽  
Vol 615 ◽  
pp. A61 ◽  
Author(s):  
L. Ciesla ◽  
D. Elbaz ◽  
C. Schreiber ◽  
E. Daddi ◽  
T. Wang

Variations of star formation activity may happen on a large range of timescales and some of them are expected to be short, that is, a few hundred million years. The study of the physical processes linked to these rapid variations requires large statistical samples to pinpoint galaxies undergoing such transformations. Building upon a previous study, we define a method to blindly identify galaxies that have undergone, and may still be undergoing, a fast downfall of their star formation activity, that is, a more than 80% drop in star formation rate (SFR) occurring in less than 500 Myr. Modeling galaxies’ spectral energy distribution (SED) with a delayed-τ star formation history, with and without allowing an instantaneous SFR drop within the last hundred million years, we isolate 102 candidates out of a subsample of 6680 galaxies classified as “star forming” from the UVJ criterion in the ZFOURGE catalogs. These galaxies are mostly located in the lower part of the SFR-M* main sequence (MS) and extend up to a factor 100 below it. They also lie close to the limit between the passive and active regions on the UVJ diagram, indicating that they are in a transition phase. We show that the selected candidates have different physical properties compared to galaxies with similar UVJ colors, namely, lower SFRs and different stellar masses. The morphology of the candidates shows no preference for a particular type. Among the 102 candidates, only 4 show signs of a active galactic nucleus (AGN) activity (from X-ray luminosity or ultraviolet–infrared (UV–IR) SED fitting decomposition). This low fraction of AGNs among the candidates implies that AGN activity may not be the main driver of the recent downfall, although timescale differences and duty cycle must be taken into account. We finally attempt to recover the past position of these galaxies on the SFR-M* plane, before the downfall of their star formation and show that some of them were in the starburst region before, and are now back on the MS. These candidates constitute a promising sample that needs more investigation in order to understand the different mechanisms at the origin of the star formation decrease of the Universe since z ~ 2.


2018 ◽  
Vol 621 ◽  
pp. A25 ◽  
Author(s):  
I. Fuentes-Carrera ◽  
M. Rosado ◽  
P. Amram ◽  
E. Laurikainen ◽  
H. Salo ◽  
...  

Context. Encounters between galaxies modify their morphology, kinematics, and star formation history. The relation between these changes and external perturbations is not straightforward. The great number of parameters involved requires both the study of large samples and individual encounters where particular features, motions, and perturbations can be traced and analysed in detail. Aims. We analysed the morphology, kinematics, and dynamics of two luminous infrared spiral galaxies of almost equal mass, NGC 5257 and NGC 5258, in which star formation is mostly confined to the spiral arms, in order to understand interactions between galaxies of equivalent masses and star-forming processes during the encounter. Methods. Using scanning Fabry–Perot interferometry, we studied the contribution of circular and non-circular motions and the response of the ionized gas to external perturbations. We compared the kinematics with direct images and traced the star-forming processes and gravitational effects due to the presence of the other galaxy. The spectral energy distribution of each member of the pair was fitted. A mass model was fitted to the rotation curve of each galaxy. Results. Large, non-circular motions detected in both galaxies are associated with a bar, spiral arms, and HII regions for the inner parts of the galaxies, and with the tidal interaction for the outer parts of the discs. Bifurcations in the rotation curves indicate that the galaxies have recently undergone pericentric passage. The pattern speed of a perturbation of one of the galaxies is computed. Location of a possible corotation seems to indicate that the gravitational response of the ionized gas in the outer parts of the disc is related to the regions where ongoing star formation is confined. The spectral energy distribution fit indicates slightly different star formation history for each member of the pair. For both galaxies, a pseudo-isothermal halo better fits the global mass distribution.


2019 ◽  
Vol 631 ◽  
pp. A156 ◽  
Author(s):  
L. A. Díaz-García ◽  
A. J. Cenarro ◽  
C. López-Sanjuan ◽  
I. Ferreras ◽  
M. Cerviño ◽  
...  

Aims. Our aim is to determine the distribution of stellar population parameters (extinction, age, metallicity, and star formation rates) of quiescent galaxies within the rest-frame stellar mass–colour diagrams and UVJ colour–colour diagrams corrected for extinction up to z ∼ 1. These novel diagrams reduce the contamination in samples of quiescent galaxies owing to dust-reddened galaxies, and they provide useful constraints on stellar population parameters only using rest-frame colours and/or stellar mass. Methods. We set constraints on the stellar population parameters of quiescent galaxies combining the ALHAMBRA multi-filter photo-spectra with our fitting code for spectral energy distribution, MUlti-Filter FITting (MUFFIT), making use of composite stellar population models based on two independent sets of simple stellar population (SSP) models. The extinction obtained by MUFFIT allowed us to remove dusty star-forming (DSF) galaxies from the sample of red UVJ galaxies. The distributions of stellar population parameters across these rest-frame diagrams are revealed after the dust correction and are fitted by LOESS, a bi-dimensional and locally weighted regression method, to reduce uncertainty effects. Results. Quiescent galaxy samples defined via classical UVJ diagrams are typically contaminated by a ∼20% fraction of DSF galaxies. A significant part of the galaxies in the green valley are actually obscured star-forming galaxies (∼30–65%). Consequently, the transition of galaxies from the blue cloud to the red sequence, and hence the related mechanisms for quenching, seems to be much more efficient and faster than previously reported. The rest-frame stellar mass–colour and UVJ colour–colour diagrams are useful for constraining the age, metallicity, extinction, and star formation rate of quiescent galaxies by only their redshift, rest-frame colours, and/or stellar mass. Dust correction plays an important role in understanding how quiescent galaxies are distributed in these diagrams and is key to performing a pure selection of quiescent galaxies via intrinsic colours.


2018 ◽  
Vol 615 ◽  
pp. A146 ◽  
Author(s):  
W. J. Pearson ◽  
L. Wang ◽  
P. D. Hurley ◽  
K. Małek ◽  
V. Buat ◽  
...  

Context. Deep far-infrared (FIR) cosmological surveys are known to be affected by source confusion, causing issues when examining the main sequence (MS) of star forming galaxies. In the past this has typically been partially tackled by the use of stacking. However, stacking only provides the average properties of the objects in the stack. Aims. This work aims to trace the MS over 0.2 ≤ z < 6.0 using the latest de-blended Herschel photometry, which reaches ≈10 times deeper than the 5σ confusion limit in SPIRE. This provides more reliable star formation rates (SFRs), especially for the fainter galaxies, and hence a more reliable MS. Methods. We built a pipeline that uses the spectral energy distribution (SED) modelling and fitting tool CIGALE to generate flux density priors in the Herschel SPIRE bands. These priors were then fed into the de-blending tool XID+ to extract flux densities from the SPIRE maps. In the final step, multi-wavelength data were combined with the extracted SPIRE flux densities to constrain SEDs and provide stellar mass (M⋆) and SFRs. These M⋆ and SFRs were then used to populate the SFR-M⋆ plane over 0.2 ≤ z < 6.0. Results. No significant evidence of a high-mass turn-over was found; the best fit is thus a simple two-parameter power law of the form log(SFR) = α[log(M⋆) − 10.5] + β. The normalisation of the power law increases with redshift, rapidly at z ≲ 1.8, from 0.58 ± 0.09 at z ≈ 0.37 to 1.31 ± 0.08 at z ≈ 1.8. The slope is also found to increase with redshift, perhaps with an excess around 1.8 ≤ z < 2.9. Conclusions. The increasing slope indicates that galaxies become more self-similar as redshift increases. This implies that the specific SFR of high-mass galaxies increases with redshift, from 0.2 to 6.0, becoming closer to that of low-mass galaxies. The excess in the slope at 1.8 ≤ z < 2.9, if present, coincides with the peak of the cosmic star formation history.


2019 ◽  
Vol 490 (3) ◽  
pp. 3840-3859 ◽  
Author(s):  
T Cheng ◽  
D L Clements ◽  
J Greenslade ◽  
J Cairns ◽  
P Andreani ◽  
...  

ABSTRACT We present SCUBA-2 850 $\mathrm{ \mu}$m observations of 13 candidate starbursting protoclusters selected using Planck and Herschel data. The cumulative number counts of the 850 $\mathrm{ \mu}$m sources in 9 of 13 of these candidate protoclusters show significant overdensities compared to the field, with the probability &lt;10−2 assuming the sources are randomly distributed in the sky. Using the 250, 350, 500, and 850 $\mathrm{ \mu}$m flux densities, we estimate the photometric redshifts of individual SCUBA-2 sources by fitting spectral energy distribution templates with an MCMC method. The photometric redshift distribution, peaking at 2 &lt; z &lt; 3, is consistent with that of known z &gt; 2 protoclusters and the peak of the cosmic star formation rate density (SFRD). We find that the 850 $\mathrm{ \mu}$m sources in our candidate protoclusters have infrared luminosities of $L_{\mathrm{IR}}\gtrsim 10^{12}\, \mathrm{L}_{\odot }$ and star formation rates of SFR  = (500–1500) M⊙ yr−1. By comparing with results in the literature considering only Herschel photometry, we conclude that our 13 candidate protoclusters can be categorized into four groups: six of them being high-redshift starbursting protoclusters, one being a lower redshift cluster or protocluster, three being protoclusters that contain lensed dusty star-forming galaxies or are rich in 850 $\mathrm{ \mu}$m sources, and three regions without significant Herschel or SCUBA-2 source overdensities. The total SFRs of the candidate protoclusters are found to be comparable or higher than those of known protoclusters, suggesting our sample contains some of the most extreme protocluster population. We infer that cross-matching Planck and Herschel data is a robust method for selecting candidate protoclusters with overdensities of 850 $\mathrm{ \mu}$m sources.


2019 ◽  
Vol 623 ◽  
pp. A141
Author(s):  
M. Figueira ◽  
C. López-Calderón ◽  
L. Bronfman ◽  
A. Zavagno ◽  
C. Hervías-Caimapo ◽  
...  

Context. The star formation process requires the dust and gas present in the Milky Way to self-assemble into dense reservoirs of neutral material where the new generation of stars will emerge. Star-forming regions are usually studied in the context of Galactic surveys, but dedicated observations are sometimes needed when the study reaches beyond the survey area. Aims. A better understanding of the star formation process in the Galaxy can be obtained by studying several regions. This allows increasing the sample of objects (clumps, cores, and stars) for further statistical works and deeper follow-up studies. Here, we studied the G345.5+1.5 region, which is located slightly above the Galactic plane, to understand its star formation properties. Methods. We combined Large Apex BOlometer CAmera (LABOCA) and 12CO(4−3) transition line (NANTEN2) observations complemented with the Hi-GAL and Spitzer-GLIMPSE surveys to study the star formation toward this region. We used the Clumpfind algorithm to extract the clumps from the 870 μm and 12CO(4−3) data. Radio emission at 36 cm was used to estimate the number of H II regions and to remove the contamination from the free–free emission at 870 μm. We employed color–color diagrams and spectral energy distribution (SED) slopes to distinguish between prestellar and protostellar clumps. We studied the boundedness of the clumps through the virial parameter. Finally, we estimated the star formation efficiency (SFE) and star formation rate (SFR) of the region and used the Schmidt–Kennicutt diagram to compare its ability to form stars with other regions of the Galactic plane. Results. Of the 13 radio sources that we found using the MGPS-2 catalog, 7 are found to be associated with H II regions corresponding to late-B or early-O stars. We found 45 870 μm clumps with diameters between 0.4 and 1.2 pc and masses between 43 M⊙ and 3923 M⊙, and 107 12CO clumps with diameters between 0.4 and 1.3 pc and masses between 28 M⊙ and 9433 M⊙. More than 50% of the clumps are protostellar and bounded and are able to host (massive) star formation. High SFR and SFR density (ΣSFR) values are associated with the region, with an SFE of a few percent. Conclusions. With submillimeter, CO transition, and short-wavelength infrared observations, our study reveals a population of massive stars, protostellar and bound starless clumps, toward G345.5+1.5. This region is therefore actively forming stars, and its location in the starburst quadrant of the Schmidt–Kennicutt diagram is comparable to other star-forming regions found within the Galactic plane.


2021 ◽  
Vol 923 (2) ◽  
pp. L27
Author(s):  
N. Sulzenauer ◽  
H. Dannerbauer ◽  
A. Díaz-Sánchez ◽  
B. Ziegler ◽  
S. Iglesias-Groth ◽  
...  

Abstract Based on observations with the IRAM 30 m and Yebes 40 m telescopes, we report evidence of the detection of Milky Way–like, low-excitation molecular gas, up to the transition CO(J = 5–4), in a distant, dusty star-forming galaxy at z CO = 1.60454. WISE J122651.0+214958.8 (alias SDSS J1226, the Cosmic Seahorse), is strongly lensed by a foreground galaxy cluster at z = 0.44 with a source magnification of μ = 9.5 ± 0.7. This galaxy was selected by cross-correlating near-to-mid-infrared colors within the full-sky AllWISE survey, originally aiming to discover rare analogs of the archetypical strongly lensed submillimeter galaxy SMM J2135–0102, the Cosmic Eyelash. We derive an apparent (i.e., not corrected for lensing magnification) rest-frame 8–1000 μm infrared luminosity of μ L IR = 1.66 − 0.04 + 0.04 × 10 13 L ⊙ and apparent star formation rate μSFRIR = 2960 ± 70 M ⊙ yr−1. SDSS J1226 is ultrabright at S 350μm ≃ 170 mJy and shows similarly bright low-J CO line intensities as SMM J2135–0102, however, with exceptionally small CO(J = 5–4) intensity. We consider different scenarios to reconcile our observations with typical findings of high-z starbursts, and speculate about the presence of a previously unseen star formation mechanism in cosmic noon submillimeter galaxies. In conclusion, the remarkable low line luminosity ratio r 5,2 = 0.11 ± 0.02 is best explained by an extended, main-sequence star formation mode—representing a missing link between starbursts to low-luminosity systems during the epoch of peak star formation history.


Author(s):  
S. W. Duchesne ◽  
M. Johnston-Hollitt

AbstractWe present new observations of the large-scale radio emission surrounding the lenticular galaxy NGC 1534 with the Australia Telescope Compact Array and Murchison Widefield Array. We find no significant compact emission from the nucleus of NGC 1534 to suggest an active core, and instead find low-power radio emission tracing its star-formation history with a radio-derived star-formation rate of 0.38±0.03 M⊙yr−1. The spectral energy distribution of the extended emission is well-fit by a continuous injection model with an ‘off’ component, consistent with dead radio galaxies. We find the spectral age of the emission to be 203 Myr, having been active for 44 Myr. Polarimetric analysis points to both a large-scale magneto-ionic Galactic foreground at +33 rad m−2and a component associated with the northern lobe of the radio emission at -153 rad m−2. The magnetic field of the northern lobe shows an unusual circular pattern of unknown origin. While such remnant sources are rare, combined low- and high-frequency radio surveys with high surface-brightness sensitivities are expected to greatly increase their numbers in the coming decade, and combined with new optical and infrared surveys should provide a wealth of information on the hosts of the emission.


2020 ◽  
Vol 492 (4) ◽  
pp. 5592-5606 ◽  
Author(s):  
A Katsianis ◽  
V Gonzalez ◽  
D Barrientos ◽  
X Yang ◽  
C D P Lagos ◽  
...  

ABSTRACT There is a severe tension between the observed star formation rate (SFR)–stellar mass (M⋆) relations reported by different authors at z = 1–4. In addition, the observations have not been successfully reproduced by state-of-the-art cosmological simulations that tend to predict a factor of 2–4 smaller SFRs at a fixed M⋆. We examine the evolution of the SFR–M⋆ relation of z = 1–4 galaxies using the skirt simulated spectral energy distributions of galaxies sampled from the Evolution and Assembly of GaLaxies and their Environments simulations. We derive SFRs and stellar masses by mimicking different observational techniques. We find that the tension between observed and simulated SFR–M⋆ relations is largely alleviated if similar methods are used to infer the galaxy properties. We find that relations relying on infrared wavelengths (e.g. 24 ${\rm \, \mu m}$, MIPS – 24, 70, and 160 ${\rm \, \mu m}$ or SPIRE – 250, 350, and 500 ${\rm \, \mu m}$) have SFRs that exceed the intrinsic relation by 0.5 dex. Relations that rely on the spectral energy distribution fitting technique underpredict the SFRs at a fixed stellar mass by −0.5 dex at z ∼ 4 but overpredict the measurements by 0.3 dex at z ∼ 1. Relations relying on dust-corrected rest-frame ultraviolet luminosities, are flatter since they overpredict/underpredict SFRs for low/high star-forming objects and yield deviations from the intrinsic relation from 0.10 to −0.13 dex at z ∼ 4. We suggest that the severe tension between different observational studies can be broadly explained by the fact that different groups employ different techniques to infer their SFRs.


Sign in / Sign up

Export Citation Format

Share Document