scholarly journals Connecting stellar mass and star-formation rate to dark matter halo mass out to z ∼ 2

2013 ◽  
Vol 431 (1) ◽  
pp. 648-661 ◽  
Author(s):  
L. Wang ◽  
D. Farrah ◽  
S. J. Oliver ◽  
A. Amblard ◽  
M. Béthermin ◽  
...  
Author(s):  
Haruka Kusakabe ◽  
Kazuhiro Shimasaku ◽  
Masami Ouchi ◽  
Kimihiko Nakajima ◽  
Ryosuke Goto ◽  
...  

2018 ◽  
Vol 614 ◽  
pp. A39 ◽  
Author(s):  
A. S. Maniyar ◽  
M. Béthermin ◽  
G. Lagache

We present a linear clustering model of cosmic infrared background (CIB) anisotropies at large scales that is used to measure the cosmic star formation rate density up to redshift 6, the effective bias of the CIB, and the mass of dark matter halos hosting dusty star-forming galaxies. This is achieved using the Planck CIB auto- and cross-power spectra (between different frequencies) and CIB × CMB (cosmic microwave background) lensing cross-spectra measurements, as well as external constraints (e.g. on the CIB mean brightness). We recovered an obscured star formation history which agrees well with the values derived from infrared deep surveys and we confirm that the obscured star formation dominates the unobscured formation up to at least z = 4. The obscured and unobscured star formation rate densities are compatible at 1σ at z = 5. We also determined the evolution of the effective bias of the galaxies emitting the CIB and found a rapid increase from ~0.8 at z = 0 to ~8 at z = 4. At 2 < z < 4, this effective bias is similar to that of galaxies at the knee of the mass functions and submillimetre galaxies. This effective bias is the weighted average of the true bias with the corresponding emissivity of the galaxies. The halo mass corresponding to this bias is thus not exactly the mass contributing the most to the star formation density. Correcting for this, we obtained a value of log(Mh/M⊙) = 12.77−0.125+0.128 for the mass of the typical dark matter halo contributing to the CIB at z = 2. Finally, using a Fisher matrix analysis we also computed how the uncertainties on the cosmological parameters affect the recovered CIB model parameters, and find that the effect is negligible.


2019 ◽  
Vol 491 (4) ◽  
pp. 5083-5100
Author(s):  
Jaime Salcido ◽  
Richard G Bower ◽  
Tom Theuns

ABSTRACT We introduce a simple analytic model of galaxy formation that links the growth of dark matter haloes in a cosmological background to the build-up of stellar mass within them. The model aims to identify the physical processes that drive the galaxy-halo co-evolution through cosmic time. The model restricts the role of baryonic astrophysics to setting the relation between galaxies and their haloes. Using this approach, galaxy properties can be directly predicted from the growth of their host dark matter haloes. We explore models in which the effective star formation efficiency within haloes is a function of mass (or virial temperature) and independent of time. Despite its simplicity, the model reproduces self-consistently the shape and evolution of the cosmic star formation rate density, the specific star formation rate of galaxies, and the galaxy stellar mass function, both at the present time and at high redshifts. By systematically varying the effective star formation efficiency in the model, we explore the emergence of the characteristic shape of the galaxy stellar mass function. The origin of the observed double Schechter function at low redshifts is naturally explained by two efficiency regimes in the stellar to halo mass relation, namely, a stellar feedback regulated stage, and a supermassive black hole regulated stage. By providing a set of analytic differential equations, the model can be easily extended and inverted, allowing the roles and impact of astrophysics and cosmology to be explored and understood.


Author(s):  
Mahavir Sharma ◽  
Tom Theuns

Abstract We present the Iκεα model of galaxy formation, in which a galaxy’s star formation rate is set by the balance between energy injected by feedback from massive stars and energy lost by the deepening of the potential of its host dark matter halo due to cosmological accretion. Such a balance is secularly stable provided that the star formation rate increases with the pressure in the star forming gas. The Iκεα model has four parameters that together control the feedback from star formation and the cosmological accretion rate onto a halo. Iκεα reproduces accurately the star formation rate as a function of halo mass and redshift in the eagle hydrodynamical simulation, even when all four parameters are held constant. It predicts the emergence of a star forming main sequence along which the specific star formation rate depends weakly on stellar mass with an amplitude that increases rapidly with redshift. We briefly discuss the emerging mass-metallicity relation, the evolution of the galaxy stellar mass function, and an extension of the model that includes feedback from active galactic nuclei (AGN). These self-regulation results are independent of the star formation law and the galaxy’s gas content. Instead, star forming galaxies are shaped by the balance between stellar feedback and cosmological accretion, with accurately accounting for energy losses associated with feedback a crucial ingredient.


2015 ◽  
Vol 11 (S319) ◽  
pp. 1-1
Author(s):  
Hervé Aussel ◽  
Sébastien Peirani ◽  
Laurent Vigroux

AbstractWe investigate why hydrodynamical numerical simulations have difficulties (Weinmann et al. 2011) in reproducing the Main Sequence (MS) of star-forming galaxies, i.e. the fact that galaxies forming stars lie on a tight power law sequence in the stellar mass (M*), star formation rate (SFR) plane (Schreiber et al. 2015). Instead of trying to improve the agreement of simulations with the observations by modifying the subgrid recipes of baryons, we take here a step back to check whether the accretion onto dark matter halos is consistent with the existence of the main sequence of star forming galaxies.


Author(s):  
Marvin Blank ◽  
Liam E Meier ◽  
Andrea V Macciò ◽  
Aaron A Dutton ◽  
Keri L Dixon ◽  
...  

Abstract We investigate how the NIHAO galaxies match the observed star formation main sequence (SFMS) and what the origin of its scatter is. The NIHAO galaxies reproduce the SFMS and generally agree with observations, but the slope is about unity and thus significantly larger than observed values. This is because observed galaxies at large stellar masses, although still being part of the SFMS, are already influenced by quenching. This partial suppression of star formation by AGN feedback leads to lower star formation rates and therefore to lower observed slopes. We confirm that including the effects of AGN in our galaxies leads to slopes in agreement with observations. We find the deviation of a galaxy from the SFMS is correlated with its z = 0 dark matter halo concentration and thus with its halo formation time. This means galaxies with a higher-than-average star formation rate (SFR) form later and vice versa. We explain this apparent correlation with the SFR by re-interpreting galaxies that lie above the SFMS (higher-than-average SFR) as lying to the left of the SFMS (lower-than-average stellar mass) and vice versa. Thus later forming haloes have a lower-than-average stellar mass, this is simply because they have had less-than-average time to form stars, and vice versa. It is thus the nature, i.e. how and when these galaxies form, that sets the path of a galaxy in the SFR versus stellar mass plane.


2015 ◽  
Vol 806 (2) ◽  
pp. 189 ◽  
Author(s):  
Jae-Woo Kim ◽  
Myungshin Im ◽  
Seong-Kook Lee ◽  
Alastair C. Edge ◽  
David A. Wake ◽  
...  

2021 ◽  
Author(s):  
Ignacio Martin Navarro ◽  
Francesco Shankar ◽  
Mar Mezcua

Abstract Galaxies, forming and evolving within their host dark matter haloes, are the end-product of a balance between gas cooling, star formation and feedback. Energy/Momentum feedback, in particular from active galactic nuclei (AGN), is believed to play a crucial role in the evolution of galaxies by gradually quenching their star formation. In the local Universe many galaxies with an AGN are indeed observed to reside in the so-called green valley, usually interpreted as a transition phase from a blue star formation epoch to a red quenched state. We use data from the Sloan Digital Sky Survey to show that such an interpretation requires substantial revision. Optically-selected nearby AGN galaxies follow exponentially declining star formation histories, as normal galaxies of similar stellar and dark matter halo mass, reaching in the recent past (~0.1 Gyr ago) star formation rate levels consistent with a quiescent population. However, we find that local AGN galaxies have experienced a sudden increase in their star formation rate, unfolding on timescales similar to those typical of AGN activity, suggesting that both star formation and AGN activity were triggered simultaneously. We find that this quenching process followed by an enhancement in the star formation rate is common to AGN galaxies and more pronounced in early type galaxies. Our results demonstrate that local AGN galaxies are not a transition type between star-forming and quiescent galaxies as previously postulated, but simply galaxies experiencing a recent gas accretion episode.


2010 ◽  
Vol 6 (S270) ◽  
pp. 503-506
Author(s):  
Pedro Colín ◽  
Vladimir Avila-Reese ◽  
Octavio Valenzuela

AbstractCosmological Adaptive Mesh Refinement simulations are used to study the specific star formation rate (sSFR=SSF/Ms) history and the stellar mass fraction, fs=Ms/MT, of small galaxies, total masses MT between few × 1010 M⊙ to few ×1011 M⊙. Our results are compared with recent observational inferences that show the so-called “downsizing in sSFR” phenomenon: the less massive the galaxy, the higher on average is its sSFR, a trend seen at least since z ~ 1. The simulations are not able to reproduce this phenomenon, in particular the high inferred values of sSFR, as well as the low values of fs constrained from observations. The effects of resolution and sub-grid physics on the SFR and fs of galaxies are discussed.


Author(s):  
P Bonfini ◽  
A Zezas ◽  
M L N Ashby ◽  
S P Willner ◽  
A Maragkoudakis ◽  
...  

Abstract We constrain the mass distribution in nearby, star-forming galaxies with the Star Formation Reference Survey (SFRS), a galaxy sample constructed to be representative of all known combinations of star formation rate (SFR), dust temperature, and specific star formation rate (sSFR) that exist in the Local Universe. An innovative two-dimensional bulge/disk decomposition of the 2MASS/Ks-band images of the SFRS galaxies yields global luminosity and stellar mass functions, along with separate mass functions for their bulges and disks. These accurate mass functions cover the full range from dwarf galaxies to large spirals, and are representative of star-forming galaxies selected based on their infra-red luminosity, unbiased by AGN content and environment. We measure an integrated luminosity density j = 1.72 ± 0.93 × 109 L⊙  h−1 Mpc−3 and a total stellar mass density ρM = 4.61 ± 2.40 × 108 M⊙  h−1 Mpc−3. While the stellar mass of the average star-forming galaxy is equally distributed between its sub-components, disks globally dominate the mass density budget by a ratio 4:1 with respect to bulges. In particular, our functions suggest that recent star formation happened primarily in massive systems, where they have yielded a disk stellar mass density larger than that of bulges by more than 1 dex. Our results constitute a reference benchmark for models addressing the assembly of stellar mass on the bulges and disks of local (z = 0) star-forming galaxies.


Sign in / Sign up

Export Citation Format

Share Document