scholarly journals Back to the future: estimating initial globular cluster masses from their present-day stellar mass functions

2015 ◽  
Vol 453 (3) ◽  
pp. 3279-3288 ◽  
Author(s):  
Jeremy J. Webb ◽  
Nathan W. C. Leigh
2021 ◽  
Author(s):  
Mark Gieles ◽  
Denis Erkal ◽  
Fabio Antonini ◽  
Eduardo Balbinot ◽  
Jorge Peñarrubia

2018 ◽  
Vol 614 ◽  
pp. A43 ◽  
Author(s):  
Sami Dib ◽  
Shantanu Basu

We investigate the dependence of a single-generation galactic mass function (SGMF) on variations in the initial stellar mass functions (IMF) of stellar clusters. We show that cluster-to-cluster variations of the IMF lead to a multi-component SGMF where each component in a given mass range can be described by a distinct power-law function. We also show that a dispersion of ≈0.3 M⊙ in the characteristic mass of the IMF, as observed for young Galactic clusters, leads to a low-mass slope of the SGMF that matches the observed Galactic stellar mass function even when the IMFs in the low-mass end of individual clusters are much steeper.


Author(s):  
P Bonfini ◽  
A Zezas ◽  
M L N Ashby ◽  
S P Willner ◽  
A Maragkoudakis ◽  
...  

Abstract We constrain the mass distribution in nearby, star-forming galaxies with the Star Formation Reference Survey (SFRS), a galaxy sample constructed to be representative of all known combinations of star formation rate (SFR), dust temperature, and specific star formation rate (sSFR) that exist in the Local Universe. An innovative two-dimensional bulge/disk decomposition of the 2MASS/Ks-band images of the SFRS galaxies yields global luminosity and stellar mass functions, along with separate mass functions for their bulges and disks. These accurate mass functions cover the full range from dwarf galaxies to large spirals, and are representative of star-forming galaxies selected based on their infra-red luminosity, unbiased by AGN content and environment. We measure an integrated luminosity density j = 1.72 ± 0.93 × 109 L⊙  h−1 Mpc−3 and a total stellar mass density ρM = 4.61 ± 2.40 × 108 M⊙  h−1 Mpc−3. While the stellar mass of the average star-forming galaxy is equally distributed between its sub-components, disks globally dominate the mass density budget by a ratio 4:1 with respect to bulges. In particular, our functions suggest that recent star formation happened primarily in massive systems, where they have yielded a disk stellar mass density larger than that of bulges by more than 1 dex. Our results constitute a reference benchmark for models addressing the assembly of stellar mass on the bulges and disks of local (z = 0) star-forming galaxies.


1987 ◽  
Vol 316 ◽  
pp. 206 ◽  
Author(s):  
Graeme H. Smith ◽  
Robert D. McClure

1991 ◽  
Vol 381 ◽  
pp. 147 ◽  
Author(s):  
Harvey B. Richer ◽  
Gregory G. Fahlman ◽  
Roberto Buonanno ◽  
Flavio Fusi Pecci ◽  
Leonard Searle ◽  
...  

2001 ◽  
Vol 557 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Michael L. Balogh ◽  
Daniel Christlein ◽  
Ann I. Zabludoff ◽  
Dennis Zaritsky

Author(s):  
Aldo Rodríguez-Puebla ◽  
A. R. Calette ◽  
Vladimir Avila-Reese ◽  
Vicente Rodriguez-Gomez ◽  
Marc Huertas-Company

Abstract We report the bivariate $\rm HI$ - and $\rm H_{2}$ -stellar mass distributions of local galaxies in addition of an inventory of galaxy mass functions, MFs, for $\rm HI$ , $\rm H_{2}$ , cold gas, and baryonic mass, separately into early- and late-type galaxies. The MFs are determined using the $\rm HI$ and $\rm H_{2}$ conditional distributions and the galaxy stellar mass function (GSMF). For the conditional distributions we use the results from the compilation presented in Calette et al. [(2018) RMxAA, 54, 443.]. For determining the GSMF from $M_{*}\sim3\times10^{7}$ to $3\times10^{12}\ \text{M}_{\odot}$ , we combine two spectroscopic samples from the Sloan Digital Sky Survey at the redshift range $0.0033<z<0.2$ . We find that the low-mass end slope of the GSMF, after correcting from surface brightness incompleteness, is $\alpha\approx-1.4$ , consistent with previous determinations. The obtained $\rm HI\,$ MFs agree with radio blind surveys. Similarly, the $\rm H_{2}\,$ MFs are consistent with CO follow-up optically-selected samples. We estimate the impact of systematics due to mass-to-light ratios and find that our MFs are robust against systematic errors. We deconvolve our MFs from random errors to obtain the intrinsic MFs. Using the MFs, we calculate cosmic density parameters of all the baryonic components. Baryons locked inside galaxies represent 5.4% of the universal baryon content, while $\sim\! 96\%$ of the $\rm HI$ and $\rm H_{2}$ mass inside galaxies reside in late-type morphologies. Our results imply cosmic depletion times of $\rm H_{2}$ and total neutral H in late-type galaxies of $\sim\!1.3$ and 7.2 Gyr, respectively, which shows that late type galaxies are on average inefficient in converting $\rm H_{2}$ into stars and in transforming $\rm HI$ gas into $\rm H_{2}$ . Our results provide a fully self-consistent empirical description of galaxy demographics in terms of the bivariate gas–stellar mass distribution and their projections, the MFs. This description is ideal to compare and/or to constrain galaxy formation models.


Sign in / Sign up

Export Citation Format

Share Document