scholarly journals A new galactic chemical evolution model with dust: results for dwarf irregular galaxies and DLA systems

2016 ◽  
Vol 464 (1) ◽  
pp. 985-1002 ◽  
Author(s):  
L. Gioannini ◽  
F. Matteucci ◽  
G. Vladilo ◽  
F. Calura
2016 ◽  
Vol 109 ◽  
pp. 02002 ◽  
Author(s):  
Zhen Yuan ◽  
Yong-Zhong Qian ◽  
Yi Peng Jing

2017 ◽  
Vol 605 ◽  
pp. A59 ◽  
Author(s):  
Jan Rybizki ◽  
Andreas Just ◽  
Hans-Walter Rix

2000 ◽  
Vol 198 ◽  
pp. 563-564
Author(s):  
Andreu Alibés ◽  
Javier Labay ◽  
Ramon Canal

We present the Light Element Evolution resulting from our new Chemical Evolution model. The LiBeB evolution is correctly fitted by taking into account several sources: Big Bang, Galactic Cosmic Ray Nucleosynthesis, the ν-process, novae and AGB and C-stars.


2009 ◽  
Vol 5 (H15) ◽  
pp. 281-281
Author(s):  
Antonio Pipino

AbstractI present predictions from a chemical evolution model for a self-consistent study of optical (i.e., stellar) and X-ray (i.e., gas) properties of present-day elliptical galaxies. Detailed cooling and heating processes in the interstellar medium are taken into account and allow a reliable modelling of the SN-driven galactic wind. The model simultaneously reproduces the mass-metallicity, colour-magnitude, LX - LB and LX - T relations, and the observed trend of [Mg/Fe] with σ. The "iron discrepancy" can be solved by taking into account the dust presence.


2019 ◽  
Vol 14 (S351) ◽  
pp. 302-304
Author(s):  
Sohee Jang ◽  
Jenny J. Kim ◽  
Young-Wook Lee

AbstractRecent investigations of multiple stellar populations in globular clusters (GCs) suggest that the horizontal-branch (HB) morphology and mean period of type ab RR Lyrae variables are mostly sensitive to helium abundance, while the star formation timescale has the greatest effect on our chemical evolution model constructed to reproduce the Na-O anti-correlation of GCs. Therefore, by combining the results from synthetic HB model with those from chemical evolution model, we could put better constraints on star formation history and chemical evolution in GCs with multiple populations. From such efforts made for four GCs, M4, M5, M15, and M80, we find that consistent results can be obtained from these two independent models.


Sign in / Sign up

Export Citation Format

Share Document