scholarly journals Abundance patterns of multiple populations in globular clusters: a chemical evolution model based on yields from AGB ejecta

2010 ◽  
Vol 407 (2) ◽  
pp. 854-869 ◽  
Author(s):  
Annibale D'Ercole ◽  
Francesca D'Antona ◽  
Paolo Ventura ◽  
Enrico Vesperini ◽  
Stephen L. W. McMillan
2019 ◽  
Vol 14 (S351) ◽  
pp. 302-304
Author(s):  
Sohee Jang ◽  
Jenny J. Kim ◽  
Young-Wook Lee

AbstractRecent investigations of multiple stellar populations in globular clusters (GCs) suggest that the horizontal-branch (HB) morphology and mean period of type ab RR Lyrae variables are mostly sensitive to helium abundance, while the star formation timescale has the greatest effect on our chemical evolution model constructed to reproduce the Na-O anti-correlation of GCs. Therefore, by combining the results from synthetic HB model with those from chemical evolution model, we could put better constraints on star formation history and chemical evolution in GCs with multiple populations. From such efforts made for four GCs, M4, M5, M15, and M80, we find that consistent results can be obtained from these two independent models.


2019 ◽  
Vol 14 (S351) ◽  
pp. 321-323
Author(s):  
Young-Wook Lee ◽  
Jenny J. Kim ◽  
Sohee Jang ◽  
Chul Chung ◽  
Dongwook Lim ◽  
...  

AbstractIn order to investigate the origin of multiple populations in globular clusters (GCs), we have constructed new chemical evolution models for proto-GCs where the supernova blast waves undergo blowout without expelling the ambient gas. Chemical enrichments in our models are then dictated by the winds of massive stars together with the asymptotic-giant-branch stars ejecta. We find that the observed Na-O anti-correlation can be reproduced when multiple episodes of starburst and enrichment are allowed to continue in proto-GCs. The “mass budget problem” is mostly resolved by our models without ad-hoc assumptions on star formation efficiency, initial mass function, and significant loss of first-generation stars. Interestingly, ages and chemical abundances predicted by this chemical evolution model are in good agreements with those independently obtained from our stellar evolution model for the horizontal-branch. We also discuss observational evidence for the GC-like multiple populations in the Milky Way bulge.


2013 ◽  
Vol 9 (S298) ◽  
pp. 439-440
Author(s):  
Luke J. Shingles ◽  
Amanda I. Karakas ◽  
Raphael Hirschi

AbstractWe present preliminary results from a chemical evolution model that tracks the composition of heavy elements beyond iron in a globular cluster. The heavy elements can be used as tracers of the nucleosynthetic events that defined the formation and evolution of star clusters in the early Universe. In particular, the chemical evolution model focuses on the hypothesis that rapidly-rotating massive stars produced the heavy elements via the slow neutron-capture process and seeded the proto-cluster while the stars we see today were still forming.We compare our model with heavy element abundances in M4 and M5, and M22. Our results are strongly dependent on the highly uncertain rate of the 17O(α,γ)21Ne reaction, which determines the strength of 16O as a neutron poison. We find that the [Pb/Ba] ratio is too low to match the empirical value, which might suggest that a contribution from AGB stars is required.


2021 ◽  
Vol 503 (3) ◽  
pp. 3216-3231
Author(s):  
Marco Palla

ABSTRACT We study the effect of different Type Ia SN nucleosynthesis prescriptions on the Milky Way chemical evolution. To this aim, we run detailed one-infall and two-infall chemical evolution models, adopting a large compilation of yield sets corresponding to different white dwarf progenitors (near-Chandrasekar and sub-Chandrasekar) taken from the literature. We adopt a fixed delay time distribution function for Type Ia SNe, in order to avoid degeneracies in the analysis of the different nucleosynthesis channels. We also combine yields for different Type Ia SN progenitors in order to test the contribution to chemical evolution of different Type Ia SN channels. The results of the models are compared with recent LTE and NLTE observational data. We find that ‘classical’ W7 and WDD2 models produce Fe masses and [α/Fe] abundance patterns similar to more recent and physical near-Chandrasekar and sub-Chandrasekar models. For Fe-peak elements, we find that the results strongly depend either on the white dwarf explosion mechanism (deflagration-to-detonation, pure deflagration, double detonation) or on the initial white dwarf conditions (central density, explosion pattern). The comparison of chemical evolution model results with observations suggests that a combination of near-Chandrasekar and sub-Chandrasekar yields is necessary to reproduce the data of V, Cr, Mn and Ni, with different fractions depending on the adopted massive stars stellar yields. This comparison also suggests that NLTE and singly ionized abundances should be definitely preferred when dealing with most of Fe-peak elements at low metallicity.


2019 ◽  
Vol 489 (1) ◽  
pp. L80-L85 ◽  
Author(s):  
Nate Bastian ◽  
Christopher Usher ◽  
Sebastian Kamann ◽  
Carmela Lardo ◽  
Søren S Larsen ◽  
...  

ABSTRACT The presence of star-to-star light-element abundance variations (also known as multiple populations, MPs) appears to be ubiquitous within old and massive clusters in the Milky Way and all studied nearby galaxies. Most previous studies have focused on resolved images or spectroscopy of individual stars, although there has been significant effort in the past few years to look for multiple population signatures in integrated light spectroscopy. If proven feasible, integrated light studies offer a potential way to vastly open parameter space, as clusters out to 10s of Mpc can be studied. We use the Na D lines in the integrated spectra of two clusters with similar ages (2–3 Gyr) but very different masses: NGC 1978 (∼3 × 105 M⊙) in the Large Magellanic Cloud and G114 (1.7 × 107 M⊙) in NGC 1316. For NGC 1978, our findings agree with resolved studies of individual stars that did not find evidence for Na spreads. However, for G114, we find clear evidence for the presence of multiple populations. The fact that the same anomalous abundance patterns are found in both the intermediate age and ancient globular clusters lends further support to the notion that young massive clusters are effectively the same as the ancient globular clusters, only separated in age.


2016 ◽  
Vol 109 ◽  
pp. 02002 ◽  
Author(s):  
Zhen Yuan ◽  
Yong-Zhong Qian ◽  
Yi Peng Jing

2017 ◽  
Vol 605 ◽  
pp. A59 ◽  
Author(s):  
Jan Rybizki ◽  
Andreas Just ◽  
Hans-Walter Rix

2000 ◽  
Vol 198 ◽  
pp. 563-564
Author(s):  
Andreu Alibés ◽  
Javier Labay ◽  
Ramon Canal

We present the Light Element Evolution resulting from our new Chemical Evolution model. The LiBeB evolution is correctly fitted by taking into account several sources: Big Bang, Galactic Cosmic Ray Nucleosynthesis, the ν-process, novae and AGB and C-stars.


Sign in / Sign up

Export Citation Format

Share Document