scholarly journals An anonymous single copy X-chromosome clone DXS92, from Xq26–27, identifies two frequent RFLPs

1985 ◽  
Vol 13 (20) ◽  
pp. 7540-7540 ◽  
Author(s):  
G. Davatelis ◽  
M. Siniscalco ◽  
P. Szabo
Keyword(s):  
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ruth B. Phillips ◽  
Jenefer J. DeKoning ◽  
Joseph P. Brunelli ◽  
Joshua J. Faber-Hammond ◽  
John D. Hansen ◽  
...  

We characterized the male-specific region on the Y chromosome of rainbow trout, which contains both sdY (the sex-determining gene) and the male-specific genetic marker, OmyY1. Several clones containing the OmyY1 marker were screened from a BAC library from a YY clonal line and found to be part of an 800 kb BAC contig. Using fluorescencein situhybridization (FISH), these clones were localized to the end of the short arm of the Y chromosome in rainbow trout, with an additional signal on the end of the X chromosome in many cells. We sequenced a minimum tiling path of these clones using Illumina and 454 pyrosequencing. The region is rich in transposons and rDNA, but also appears to contain several single-copy protein-coding genes. Most of these genes are also found on the X chromosome; and in several cases sex-specific SNPs in these genes were identified between the male (YY) and female (XX) homozygous clonal lines. Additional genes were identified by hybridization of the BACs to the cGRASP salmonid 4x44K oligo microarray. By BLASTn evaluations using hypothetical transcripts of OmyY1-linked candidate genes as query against several EST databases, we conclude at least 12 of these candidate genes are likely functional, and expressed.


2021 ◽  
Author(s):  
Emily K Jackson ◽  
Daniel W. Bellott ◽  
Helen Skaletsky ◽  
David C. Page

Gene conversion is GC-biased across a wide range of taxa. Large palindromes on mammalian sex chromosomes undergo frequent gene conversion that maintains arm-to-arm sequence identity greater than 99%, which may increase their susceptibility to the effects of GC-biased gene conversion. Here, we demonstrate a striking history of GC-biased gene conversion in 12 palindromes conserved on the X chromosomes of human, chimpanzee, and rhesus macaque. Primate X-chromosome palindrome arms have significantly higher GC content than flanking single-copy sequences. Nucleotide replacements that occurred in human and chimpanzee palindrome arms over the past 7 million years are one-and-a-half times as GC-rich than the ancestral bases they replaced. Using simulations, we show that our observed pattern of nucleotide replacements is consistent with GC-biased gene conversion with a magnitude of 70%, similar to previously reported values based on analyses of human meioses. However, GC-biased gene conversion explains only a fraction of the observed difference in GC content between palindrome arms and flanking sequence, suggesting that additional factors are required to explain elevated GC content in palindrome arms. This work supports a greater than 2:1 preference for GC bases over AT bases during gene conversion, and demonstrates that the evolution and composition of mammalian sex chromosome palindromes is strongly influenced by GC-biased gene conversion.


Author(s):  
Matthias Vockel ◽  
Antoni Riera-Escamilla ◽  
Frank Tüttelmann ◽  
Csilla Krausz

AbstractThe X chromosome is a key player in germ cell development, as has been highlighted for males in previous studies revealing that the mammalian X chromosome is enriched in genes expressed in early spermatogenesis. In this review, we focus on the X chromosome’s unique biology as associated with human male infertility. Male infertility is most commonly caused by spermatogenic defects to which X chromosome dosage is closely linked; for example, any supernumerary X chromosome as in Klinefelter syndrome will lead to male infertility. Furthermore, because males normally only have a single X chromosome and because X-linked genetic anomalies are generally only present in a single copy in males, any loss-of-function mutations in single-copy X-chromosomal genes cannot be compensated by a normal allele. These features make X-linked genes particularly attractive for studying male spermatogenic failure. However, to date, only very few genetic causes have been identified as being definitively responsible for male infertility in humans. Although genetic studies of germ cell-enriched X-chromosomal genes in mice suggest a role of certain human orthologs in infertile men, these genes in mice and humans have striking evolutionary differences. Furthermore, the complexity and highly repetitive structure of the X chromosome hinder the mutational analysis of X-linked genes in humans. Therefore, we conclude that additional methodological approaches are urgently warranted to advance our understanding of the genetics of X-linked male infertility.


2021 ◽  
Author(s):  
Julie Jaquiery ◽  
Jean-Christophe Simon ◽  
Stephanie Robin ◽  
Gautier Richard ◽  
Jean Peccoud ◽  
...  

Males and females share essentially the same genome but differ in their optimal values for many phenotypic traits, which can result in intra-locus conflict between the sexes. Aphids display XX/X0 sex chromosomes and combine unusual X chromosome inheritance with cyclical parthenogenesis. Theoretical and empirical works support the hypothesis that the large excess of male-biased genes observed on the aphid X chromosome compared to autosomes has evolved in response to sexual conflicts, by restricting the product of a sexually antagonistic allele to the sex it benefits. However, whether such masculinization of the X affects all tissues (as expected if it evolved in response to sexual conflicts) or reflects tissue specificities (which would contradict the sexual conflict hypothesis) remains an open question. To address it, we measured gene expression in different somatic and gonadic tissues of males, sexual females and parthenogenetic females of the pea aphid. We observed a masculinization of the X at the tissue-level, with male-biased genes being 2.5 to 3.5 more frequent on the X than expected. We also tested the hypothesis that gene duplication can facilitate the attenuation of conflicts by allowing gene copies to neo- or sub-functionalize and reach sex-specific optima. As predicted, X-linked copies of duplicated genes having their other copies on autosomes were more frequently male-biased (40.5% of the genes) than duplicated autosomal genes (6.6%) or X-linked single-copy genes (32.5%). These results highlight a peculiar pattern of expression of X-linked genes in aphids at the tissue level and provides further support for sex-biased expression as a mechanism to attenuate intra-locus sexual conflicts.


Author(s):  
Emily K Jackson ◽  
Daniel W Bellott ◽  
Helen Skaletsky ◽  
David C Page

Abstract Gene conversion is GC-biased across a wide range of taxa. Large palindromes on mammalian sex chromosomes undergo frequent gene conversion that maintains arm-to-arm sequence identity greater than 99%, which may increase their susceptibility to the effects of GC-biased gene conversion. Here, we demonstrate a striking history of GC-biased gene conversion in 12 palindromes conserved on the X chromosomes of human, chimpanzee, and rhesus macaque. Primate X-chromosome palindrome arms have significantly higher GC content than flanking single-copy sequences. Nucleotide replacements that occurred in human and chimpanzee palindrome arms over the past 7 million years are one-and-a-half times as GC-rich as the ancestral bases they replaced. Using simulations, we show that our observed pattern of nucleotide replacements is consistent with GC-biased gene conversion with a magnitude of 70%, similar to previously reported values based on analyses of human meioses. However, GC-biased gene conversion since the divergence of human and rhesus macaque explains only a fraction of the observed difference in GC content between palindrome arms and flanking sequence, suggesting that palindromes are older than 29 million years and/or had elevated GC content at the time of their formation. This work supports a greater than 2:1 preference for GC bases over AT bases during gene conversion, and demonstrates that the evolution and composition of mammalian sex chromosome palindromes is strongly influenced by GC-biased gene conversion.


1985 ◽  
Vol 13 (20) ◽  
pp. 7539-7539
Author(s):  
G. Davatelis ◽  
M. Siniscalco ◽  
P. Szabo
Keyword(s):  

1981 ◽  
Vol 1 (5) ◽  
pp. 439-448 ◽  
Author(s):  
A S Olsen ◽  
O W McBride ◽  
D E Moore

Labeled probes of unique-sequence human X chromosomal deoxyribonucleic acid, prepared by two different procedures, were used to measure the amount of human X chromosomal deoxyribonucleic acid in 12 mouse cell lines expressing human hypoxanthine phosphoribosyltransferase after chromosome-mediated gene transfer. The amount of X chromosomal deoxyribonucleic acid detected by this procedure ranged from undetectable levels in the three stable transformants and some unstable transformants examined to about 20% of the human X chromosome in two unstable transformants. Reassociation kinetics of the X chromosomal probe with deoxyribonucleic acid from the two unstable transformants containing 15 to 20% of the human X chromosome indicate that a single copy of these sequences is present. In one of these lines, the X chromosomal sequences exist as multiple fragments which were not concordantly segregated when the cells were selected for loss of hprt.


1987 ◽  
Vol 15 (11) ◽  
pp. 4694-4694 ◽  
Author(s):  
G. Davatelis ◽  
M. Siniscalco ◽  
P. Szabo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document