scholarly journals Chloroplast genes transferred to the nuclear plant genome have adjusted to nuclear base composition and codon usage

1990 ◽  
Vol 18 (1) ◽  
pp. 65-73 ◽  
Author(s):  
J.L. Oliver ◽  
A. Marin ◽  
J.M. Martinez-zapater
Author(s):  
Brian R. Morton

AbstractTwo competing proposals about the degree to which selection affects codon usage of angiosperm chloroplast genes are examined. The first, based on observations that codon usage does not match expectations under the naïve assumption that base composition will be identical at all neutral sites, is that selection plays a significant role. The second is that codon usage is determined almost solely by mutation bias and drift, with selection influencing only one or two highly expressed genes, in particular psbA. First it is shown that, as a result of an influence of neighboring base composition on mutation dynamics, compositional biases are expected to be widely divergent at different sites in the absence of selection. The observed mutation properties are then used to predict expected neutral codon usage biases and to show that observed deviations from the naïve expectations are in fact expected given the context-dependent mutational dynamics. It is also shown that there is a match between the observed and expected codon usage when context effects are taken into consideration, with psbA being a notable exception. Overall, the data support the model that selection is not a widespread factor affecting the codon usage of angiosperm chloroplast genes and highlight the need to have an accurate model of mutational dynamics.


2016 ◽  
Author(s):  
Yves Clément ◽  
Gautier Sarah ◽  
Yan Holtz ◽  
Felix Homa ◽  
Stéphanie Pointet ◽  
...  

AbstractBase composition is highly variable among and within plant genomes, especially at third codon positions, ranging from GC-poor and homogeneous species to GC-rich and highly heterogeneous ones (particularly Monocots). Consequently, synonymous codon usage is biased in most species, even when base composition is relatively homogeneous. The causes of these variations are still under debate, with three main forces being possibly involved: mutational bias, selection and GC-biased gene conversion (gBGC). So far, both selection and gBGC have been detected in some species but how their relative strength varies among and within species remains unclear. Population genetics approaches allow to jointly estimating the intensity of selection, gBGC and mutational bias. We extended a recently developed method and applied it to a large population genomic datasets based on transcriptome sequencing of 11 angiosperm species spread across the phylogeny. We found that base composition is far from mutation-drift equilibrium in most genomes and that gBGC is a widespread and stronger process than selection. gBGC could strongly contribute to base composition variation among plant species, implying that it should be taken into account in plant genome analyses, especially for GC-rich ones.


2021 ◽  
Vol 17 (10) ◽  
pp. e1009535
Author(s):  
Antonina Kalkus ◽  
Joy Barrett ◽  
Theyjasvi Ashok ◽  
Brian R. Morton

The codon usage of the Angiosperm psbA gene is atypical for flowering plant chloroplast genes but similar to the codon usage observed in highly expressed plastid genes from some other Plantae, particularly Chlorobionta, lineages. The pattern of codon bias in these genes is suggestive of selection for a set of translationally optimal codons but the degree of bias towards these optimal codons is much weaker in the flowering plant psbA gene than in high expression plastid genes from lineages such as certain green algal groups. Two scenarios have been proposed to explain these observations. One is that the flowering plant psbA gene is currently under weak selective constraints for translation efficiency, the other is that there are no current selective constraints and we are observing the remnants of an ancestral codon adaptation that is decaying under mutational pressure. We test these two models using simulations studies that incorporate the context-dependent mutational properties of plant chloroplast DNA. We first reconstruct ancestral sequences and then simulate their evolution in the absence of selection on codon usage by using mutation dynamics estimated from intergenic regions. The results show that psbA has a significantly higher level of codon adaptation than expected while other chloroplast genes are within the range predicted by the simulations. These results suggest that there have been selective constraints on the codon usage of the flowering plant psbA gene during Angiosperm evolution.


Genetics ◽  
1994 ◽  
Vol 138 (1) ◽  
pp. 191-202
Author(s):  
R W DeBry ◽  
W F Marzluff

Abstract Selection promoting differential use of synonymous codons has been shown for several unicellular organisms and for Drosophila, but not for mammals. Selection coefficients operating on synonymous codons are likely to be extremely small, so that a very large effective population size is required for selection to overcome the effects of drift. In mammals, codon-usage bias is believed to be determined exclusively by mutation pressure, with differences between genes due to large-scale variation in base composition around the genome. The replication-dependent histone genes are expressed at extremely high levels during periods of DNA synthesis, and thus are among the most likely mammalian genes to be affected by selection on synonymous codon usage. We suggest that the extremely biased pattern of codon usage in the H3 genes is determined in part by selection. Silent site G + C content is much higher than expected based on flanking sequence G + C content, compared to other rodent genes with similar silent site base composition but lower levels of expression. Dinucleotide-mediated mutation bias does affect codon usage, but the affect is limited to the choice between G and C in some fourfold degenerate codons. Gene conversion between the two clusters of histone genes has not been an important force in the evolution of the H3 genes, but gene conversion appears to have had some effect within the cluster on chromosome 13.


Planta ◽  
2020 ◽  
Vol 252 (4) ◽  
Author(s):  
Supriyo Chakraborty ◽  
Sophiarani Yengkhom ◽  
Arif Uddin

2003 ◽  
Vol 81 (2) ◽  
pp. 89-90 ◽  
Author(s):  
RICHARD M. KLIMAN ◽  
JODY HEY

The usage of preferred codons in Drosophila melanogaster is reduced in regions of lower recombination. This is consistent with population genetics theory, whereby the effectiveness of selection on multiple targets is limited by stochastic effects caused by linkage. However, because the selectively preferred codons in D. melanogaster end in C or G, it has been argued that base-composition-biasing effects of recombination can account for the observed relationship between preferred codon usage and recombination rate (Marais et al., 2003). Here, we show that the correlation between base composition (of protein-coding and intron regions) and recombination rate holds only for lower values of the latter. This is consistent with a Hill–Robertson interference model and does not support a model whereby the entire effect of recombination on codon usage can be attributed to its potential role in generating compositional bias.


Parasitology ◽  
1995 ◽  
Vol 110 (1) ◽  
pp. 53-60 ◽  
Author(s):  
J. T. Ellis ◽  
D. A. Morrison

Codon usage and bias has been examined in 20 genes ofSchistosoma mansoni. Significant heterogeneity was detected in the patterns of codon usage and bias among genes by metric multidimensional scaling and three general indictors of bias (GC3S, Ncand B). In keeping with observations on sporozoan parasites, codon usage bias was observed to be dependent on the overall base composition of the genes analysed, which in turn was reflected in the types of codons that were over or under-represented in the sequences.


1996 ◽  
Vol 42 (5) ◽  
pp. 525-536 ◽  
Author(s):  
Siv G. E. Andersson ◽  
Paul M. Sharp
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document