stochastic effects
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 87)

H-INDEX

32
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 486
Author(s):  
Sorin Barabas ◽  
Adriana Florescu

The appearance of cracks in brittle materials in general and in marble, in particular, is a problem in the hydro-abrasive jet cutting process. In this paper is presented a method to reduce the appearance of cracks when cutting with a hydro-abrasive jet of marble by using statistical analysis. The Taguchi method was used, establishing the main parameters that influence the process. Research design was based on performing experiments by modifying the parameters that influence the process. In this way, it has been shown that the stochastic effects resulting from the marble structure can be reduced. A careful study was made of the behavior of marble under the action of the hydro-abrasive jet, and of the behavior of the whole process in the processing of brittle materials. Results of experiments confirmed the hypothesis that statistical analysis is a procedure that can lead to a decrease in the number of cracks in processing. The measurement was performed with precise instruments and analyzed with recognized software and according to the results obtained, the reduction of the number of cracks is achieved through use of low pressure, a minimum stand-off distance and a small tube diameter. In this way, the paper presents a new and effective tool for optimizing the cutting with a hydro-abrasive jet of marble.


2021 ◽  
Vol 118 (47) ◽  
pp. e2103626118
Author(s):  
Albert A. Lee ◽  
William Y. C. Huang ◽  
Scott D. Hansen ◽  
Neil H. Kim ◽  
Steven Alvarez ◽  
...  

Here, we present detailed kinetic analyses of a panel of soluble lipid kinases and phosphatases, as well as Ras activating proteins, acting on their respective membrane surface substrates. The results reveal that the mean catalytic rate of such interfacial enzymes can exhibit a strong dependence on the size of the reaction system—in this case membrane area. Experimental measurements and kinetic modeling reveal how stochastic effects stemming from low molecular copy numbers of the enzymes alter reaction kinetics based on mechanistic characteristics of the enzyme, such as positive feedback. For the competitive enzymatic cycles studied here, the final product—consisting of a specific lipid composition or Ras activity state—depends on the size of the reaction system. Furthermore, we demonstrate how these reaction size dependencies can be controlled by engineering feedback mechanisms into the enzymes.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1209
Author(s):  
Sergey Pavlov ◽  
Vitaly V. Gursky ◽  
Maria Samsonova ◽  
Alexander Kanapin ◽  
Anastasia Samsonova

Transposons are genomic elements that can relocate within a host genome using a ‘cut’- or ‘copy-and-paste’ mechanism. They make up a significant part of many genomes, serve as a driving force for genome evolution, and are linked with Mendelian diseases and cancers. Interactions between two specific retrotransposon types, autonomous (e.g., LINE1/L1) and nonautonomous (e.g., Alu), may lead to fluctuations in the number of these transposons in the genome over multiple cell generations. We developed and examined a simple model of retrotransposon dynamics under conditions where transposon replication machinery competed for cellular resources: namely, free ribosomes and available energy (i.e., ATP molecules). Such competition is likely to occur in stress conditions that a malfunctioning cell may experience as a result of a malignant transformation. The modeling revealed that the number of actively replicating LINE1 and Alu elements in a cell decreases with the increasing competition for resources; however, stochastic effects interfere with this simple trend. We stochastically simulated the transposon dynamics in a cell population and showed that the population splits into pools with drastically different transposon behaviors. The early extinction of active Alu elements resulted in a larger number of LINE1 copies occurring in the first pool, as there was no competition between the two types of transposons in this pool. In the other pool, the competition process remained and the number of L1 copies was kept small. As the level of available resources reached a critical value, both types of dynamics demonstrated an increase in noise levels, and both the period and the amplitude of predator–prey oscillations rose in one of the cell pools. We hypothesized that the presented dynamical effects associated with the impact of the competition for cellular resources inflicted on the dynamics of retrotransposable elements could be used as a characteristic feature to assess a cell state, or to control the transposon activity.


2021 ◽  
Vol 18 (184) ◽  
Author(s):  
Peter Czuppon ◽  
Emmanuel Schertzer ◽  
François Blanquart ◽  
Florence Débarre

Emerging epidemics and local infection clusters are initially prone to stochastic effects that can substantially impact the early epidemic trajectory. While numerous studies are devoted to the deterministic regime of an established epidemic, mathematical descriptions of the initial phase of epidemic growth are comparatively rarer. Here, we review existing mathematical results on the size of the epidemic over time, and derive new results to elucidate the early dynamics of an infection cluster started by a single infected individual. We show that the initial growth of epidemics that eventually take off is accelerated by stochasticity. As an application, we compute the distribution of the first detection time of an infected individual in an infection cluster depending on testing effort, and estimate that the SARS-CoV-2 variant of concern Alpha detected in September 2020 first appeared in the UK early August 2020. We also compute a minimal testing frequency to detect clusters before they exceed a given threshold size. These results improve our theoretical understanding of early epidemics and will be useful for the study and control of local infectious disease clusters.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7278
Author(s):  
Massinissa Hamidi ◽  
Aomar Osmani

In this article, we study activity recognition in the context of sensor-rich environments. In these environments, many different constraints arise at various levels during the data generation process, such as the intrinsic characteristics of the sensing devices, their energy and computational constraints, and their collective (collaborative) dimension. These constraints have a fundamental impact on the final activity recognition models as the quality of the data, its availability, and its reliability, among other things, are not ensured during model deployment in real-world configurations. Current approaches for activity recognition rely on the activity recognition chain which defines several steps that the sensed data undergo: This is an inductive process that involves exploring a hypothesis space to find a theory able to explain the observations. For activity recognition to be effective and robust, this inductive process must consider the constraints at all levels and model them explicitly. Whether it is a bias related to sensor measurement, transmission protocol, sensor deployment topology, heterogeneity, dynamicity, or stochastic effects, it is essential to understand their substantial impact on the quality of the data and ultimately on activity recognition models. This study highlights the need to exhibit the different types of biases arising in real situations so that machine learning models, e.g., can adapt to the dynamicity of these environments, resist sensor failures, and follow the evolution of the sensors’ topology. We propose a metamodeling approach in which these biases are specified as hyperparameters that can control the structure of the activity recognition models. Via these hyperparameters, it becomes easier to optimize the inductive processes, reason about them, and incorporate additional knowledge. It also provides a principled strategy to adapt the models to the evolutions of the environment. We illustrate our approach on the SHL dataset, which features motion sensor data for a set of human activities collected in real conditions. The obtained results make a case for the proposed metamodeling approach; noticeably, the robustness gains achieved when the deployed models are confronted with the evolution of the initial sensing configurations. The trade-offs exhibited and the broader implications of the proposed approach are discussed with alternative techniques to encode and incorporate knowledge into activity recognition models.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2544
Author(s):  
Igor Sinitsyn ◽  
Vladimir Sinitsyn ◽  
Eduard Korepanov ◽  
Tatyana Konashenkova

This article is devoted to the development of methodological supports and experimental software tools for accuracy analysis and information processing in control stochastic systems (CStS) with complex shock disturbances (ShD) by means of wavelet Haar–Galerkin technologies. Basic new results include methods and algorithms of stochastic covariance analysis and modeling on the basis of the Galerkin method and wavelet expansion for linear, linear with parametric noises, and quasilinear CStS with ShD. Results are illustrated by an information-control system at ShD. New stochastic effects accumulation for systematic and random errors are detected and investigated.


ANRI ◽  
2021 ◽  
Vol 0 (3) ◽  
pp. 69-76
Author(s):  
Vasyh Gayfutdinov

The article discusses the need to make changes to the regulatory documents that classify harmful and (or) dangerous production factors that stimulate and regulate the work of workers under the influence of ionizing radiation based on the concept of a linear dependence of the risk of stochastic effects on the received dose.


Sign in / Sign up

Export Citation Format

Share Document