mutation bias
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 30)

H-INDEX

17
(FIVE YEARS 3)

Nature ◽  
2022 ◽  
Author(s):  
J. Grey Monroe ◽  
Thanvi Srikant ◽  
Pablo Carbonell-Bejerano ◽  
Claude Becker ◽  
Mariele Lensink ◽  
...  

AbstractSince the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences1. Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less often in functionally constrained regions of the genome—mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. With independent genomic mutation datasets, including from the largest Arabidopsis mutation accumulation experiment conducted to date, we demonstrate that epigenomic and physical features explain over 90% of variance in the genome-wide pattern of mutation bias surrounding genes. Observed mutation frequencies around genes in turn accurately predict patterns of genetic polymorphisms in natural Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind patterns of sequence evolution around genes in natural accessions is supported by analyses of allele frequencies. Finally, we find that genes subject to stronger purifying selection have a lower mutation rate. We conclude that epigenome-associated mutation bias2 reduces the occurrence of deleterious mutations in Arabidopsis, challenging the prevailing paradigm that mutation is a directionless force in evolution.


Author(s):  
Brian R. Morton

AbstractTwo competing proposals about the degree to which selection affects codon usage of angiosperm chloroplast genes are examined. The first, based on observations that codon usage does not match expectations under the naïve assumption that base composition will be identical at all neutral sites, is that selection plays a significant role. The second is that codon usage is determined almost solely by mutation bias and drift, with selection influencing only one or two highly expressed genes, in particular psbA. First it is shown that, as a result of an influence of neighboring base composition on mutation dynamics, compositional biases are expected to be widely divergent at different sites in the absence of selection. The observed mutation properties are then used to predict expected neutral codon usage biases and to show that observed deviations from the naïve expectations are in fact expected given the context-dependent mutational dynamics. It is also shown that there is a match between the observed and expected codon usage when context effects are taken into consideration, with psbA being a notable exception. Overall, the data support the model that selection is not a widespread factor affecting the codon usage of angiosperm chloroplast genes and highlight the need to have an accurate model of mutational dynamics.


2021 ◽  
Author(s):  
Alexander L Cope ◽  
Premal Shah

Patterns of non-uniform usage of synonymous codons (codon bias) varies across genes in an organism and across species from all domains of life. The bias in codon usage is due to a combination of both non-adaptive (e.g. mutation biases) and adaptive (e.g. natural selection for translation efficiency/accuracy) evolutionary forces. Most population genetics models quantify the effects of mutation bias and selection on shaping codon usage patterns assuming a uniform mutation bias across the genome. However, mutation biases can vary both along and across chromosomes due to processes such as biased gene conversion, potentially obfuscating signals of translational selection. Moreover, estimates of variation in genomic mutation biases are often lacking for non-model organisms. Here, we combine an unsupervised learning method with a population genetics model of synonymous codon bias evolution to assess the impact of intragenomic variation in mutation bias on the strength and direction of natural selection on synonymous codon usage across 49 Saccharomycotina budding yeasts. We find that in the absence of a priori information, unsupervised learning approaches can be used to identify regions evolving under different mutation biases. We find that the impact of intragenomic variation in mutation bias varies widely, even among closely-related species. We show that the overall strength and direction of selection on codon usage can be underestimated by failing to account for intragenomic variation in mutation biases. Interestingly, genes falling into clusters identified by machine learning are also often physically clustered across chromosomes, consistent with processes such as biased gene conversion. Our results indicate the need for more nuanced models of sequence evolution that systematically incorporate the effects of variable mutation biases on codon frequencies.


Author(s):  
Alan M Rice ◽  
Atahualpa Castillo Morales ◽  
Alexander T Ho ◽  
Christine Mordstein ◽  
Stefanie Mühlhausen ◽  
...  
Keyword(s):  

Author(s):  
Philip Ruelens ◽  
J. Arjan G.M. de Visser

Antibiotic-resistance trajectories with different final resistance may critically depend on the first mutation due to epistatic interactions. Here, we study the effect of mutation bias and concentration-dependent fitness effects of two clinically important mutations in TEM-1 β-lactamase initiating alternative trajectories to cefotaxime resistance. We show that mutation R164S, conferring relatively low resistance, is competitively superior over larger-effect mutation G238S at low cefotaxime concentrations, highlighting a critical influence of antibiotic concentration on long-term resistance evolution.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 223
Author(s):  
Philip Ruelens ◽  
J. Arjan G. M. de Visser

Experimental evolution studies have provided key insights into the fundamental mechanisms of evolution. One striking observation is that parallel and convergent evolution during laboratory evolution can be surprisingly common. However, these experiments are typically performed with well-mixed cultures and large effective population sizes, while pathogenic microbes typically experience strong bottlenecks during infection or drug treatment. Yet, our knowledge about adaptation in very small populations, where selection strength and mutation supplies are limited, is scant. In this study, wild-type and mutator strains of the bacterium Escherichia coli were evolved for about 100 generations towards increased resistance to the β-lactam antibiotic cefotaxime in millifluidic droplets of 0.5 µL and effective population size of approximately 27,000 cells. The small effective population size limited the adaptive potential of wild-type populations, where adaptation was limited to inactivating mutations, which caused the increased production of outer-membrane vesicles, leading to modest fitness increases. In contrast, mutator clones with an average of ~30-fold higher mutation rate adapted much faster by acquiring both inactivating mutations of an outer-membrane porin and particularly inactivating and gain-of-function mutations, causing the upregulation or activation of a common efflux pump, respectively. Our results demonstrate how in very small populations, clonal interference and mutation bias together affect the choice of adaptive trajectories by mediating the balance between high-rate and large-benefit mutations.


2020 ◽  
Author(s):  
Jesper Boman ◽  
Carina F. Mugal ◽  
Niclas Backström

AbstractRecombination reshuffles the alleles of a population through crossover and gene conversion. These mechanisms have considerable consequences on the evolution and maintenance of genetic diversity. Crossover, for example, can increase genetic diversity by breaking the linkage between selected and nearby neutral variants. Bias in favor of G or C alleles during gene conversion may instead promote the fixation of one allele over the other, thus decreasing diversity. Mutation bias from G or C to A and T opposes GC-biased gene conversion (gBGC). Less recognized is that these two processes may –when balanced– promote genetic diversity. Here we investigate how gBGC and mutation bias shape genetic diversity patterns in wood white butterflies (Leptidea sp.). This constitutes the first in-depth investigation of gBGC in butterflies. Using 60 re-sequenced genomes from six populations of three species, we find substantial variation in the strength of gBGC across lineages. When modeling the balance of gBGC and mutation bias and comparing analytical results with empirical data, we reject gBGC as the main determinant of genetic diversity in these butterfly species. As alternatives, we consider linked selection and GC content. We find evidence that high values of both reduce diversity. We also show that the joint effects of gBGC and mutation bias can give rise to a diversity pattern which resembles the signature of linked selection. Consequently, gBGC should be considered when interpreting the effects of linked selection on levels of genetic diversity.


2020 ◽  
Vol 287 (1937) ◽  
pp. 20201503
Author(s):  
Kevin Gomez ◽  
Jason Bertram ◽  
Joanna Masel

The extended evolutionary synthesis invokes a role for development in shaping adaptive evolution, which in population genetics terms corresponds to mutation-biased adaptation. Critics have claimed that clonal interference makes mutation-biased adaptation rare. We consider the behaviour of two simultaneously adapting traits, one with larger mutation rate U , the other with larger selection coefficient s , using asexual travelling wave models. We find that adaptation is dominated by whichever trait has the faster rate of adaptation v in isolation, with the other trait subject to evolutionary stalling. Reviewing empirical claims for mutation-biased adaptation, we find that not all occur in the ‘origin-fixation’ regime of population genetics where v is only twice as sensitive to s as to U . In some cases, differences in U are at least ten to twelve times larger than differences in s , as needed to cause mutation-biased adaptation even in the ‘multiple mutations’ regime. Surprisingly, when U > s in the ‘diffusive-mutation’ regime, the required sensitivity ratio is also only two, despite pervasive clonal interference. Given two traits with identical v , the benefit of having higher s is surprisingly small, occurring largely when one trait is at the boundary between the origin-fixation and multiple mutations regimes.


Sign in / Sign up

Export Citation Format

Share Document