mutation pressure
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 2)

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 81
Author(s):  
Hua Feng ◽  
Joaquim Segalés ◽  
Fangyu Wang ◽  
Qianyue Jin ◽  
Aiping Wang ◽  
...  

Porcine circoviruses (PCVs) are distributed in swine herds worldwide and represent a threat to the health of domestic pigs and the profits of the swine industry. Currently, four PCV species, including PCV-1, PCV-2, PCV-3 and PCV-4, have been identified in China. Considering the ubiquitous characteristic of PCVs, the new emerged PCV-4 and the large scale of swine breeding in China, an overall analysis on codon usage bias for Chinese PCV sequences was performed by using the major proteins coding sequences (ORF1 and ORF2) to better understand the relationship of these viruses with their host. The data from genome nucleotide frequency composition and relative synonymous codon usage (RSCU) analysis revealed an overrepresentation of AT pair and the existence of a certain codon usage bias in all PCVs. However, the values of an effective number of codons (ENC) revealed that the bias was of low magnitude. Principal component analysis, ENC-plot, parity rule two analysis and correlation analysis suggested that natural selection and mutation pressure were both involved in the shaping of the codon usage patterns of PCVs. However, a neutrality plot revealed a stronger effect of natural selection than mutation pressure on codon usage patterns. Good host adaptation was also shown by the codon adaptation index analysis for all these viruses. Interestingly, obtained data suggest that PCV-4 might be more adapted to its host compared to other PCVs. The present study obtained insights into the codon usage pattern of PCVs based on ORF1 and ORF2, which further helps the understanding the molecular evolution of these swine viruses.


2021 ◽  
Author(s):  
Yanan Fu ◽  
Yanping Huang ◽  
Jingjing Rao ◽  
Feng Zeng ◽  
Ruiping Yang ◽  
...  

Abstract The outbreak of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, spread across hosts from humans to animals, transmitting particularly effectively in mink. How SARS-CoV-2 selects and evolves in the host, and the differences in the evolution of different animals are still unclear. To analysis the mutation and codon usage bias of SARS-CoV-2 in infected humans and animals. The SARS-CoV-2 sequence in mink (Mink-SARS2) and binding energy with receptor were calculated compared with human. The relative synonymous codon usage of viral encoded gene was analyzed to characterize the differences and the evolutionary characteristics. A synonymous codon usage analysis showed that SARS-CoV-2 is optimized to adapt in the animals in which it is currently reported, and all of the animals showed decreased adaptability relative to that of humans, except for mink. The neutrality plot showed that the effect of natural selection on different SARS-CoV-2 sequences is stronger than mutation pressure. A binding affinity analysis indicated that the spike protein of the SARS-CoV-2 variant in mink showed a greater preference for binding with the mink receptor ACE2 than with the human receptor, especially as the mutation Y453F and N501T in Mink-SARS2 lead to improvement of binding affinity for mink receptor. In summary, mutations Y453F and N501T in Mink-SARS2 lead to improvement of binding affinity with mink receptor, indicating possible natural selection and current host adaptation. Monitoring the variation and codon bias of SARS-CoV-2 provides a theoretical basis for tracing the epidemic, evolution and cross-species spread of SARS-CoV-2.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2289
Author(s):  
Yuan Niu ◽  
Yanyan Luo ◽  
Chunlei Wang ◽  
Weibiao Liao

Cucumber is the most important vegetable crop in the Cucurbitaceae family. Condon usage bias (CUB) is a valuable character of species evolution. However, there is little research on the CUB of cucumber. Thus, this study analyzes the codon usage patterns of cucumber and its relatives within Cucurbitaceae on the genomic level. The analysis of fundamental indicators of codon characteristics shows that it was slightly GC poor, and there was weak codon usage bias in cucumber. We conduct the analysis of neutrality plot, ENC plot, P2 index, and COA indicates that the nucleotide composition, mutation pressure, and translational selection might play roles in CUB in cucumber and its relatives. Among these factors, nucleotide composition might play the most critical role. Based on these analyses, 30 optimal codons were identified in cucumber, most of them ending with U or A. Meanwhile, based on the RSCU values of species, a cluster tree was constructed, in which the situation of cucumber is consistent with the current taxonomic and evolutionary studies in Cucurbitaceae. This study systematically compared the CUB patterns and shaping factors of cucumber and its relatives, laying a foundation for future research on genetic engineering and evolutionary mechanisms in Cucurbitaceae.


2021 ◽  
Vol 22 (19) ◽  
pp. 10264
Author(s):  
Long He ◽  
Xuan Chen ◽  
Miaoze Xu ◽  
Tingting Liu ◽  
Tianye Zhang ◽  
...  

Cystatins, as reversible inhibitors of papain-like and legumain proteases, have been identified in several plant species. Although the cystatin family plays crucial roles in plant development and defense responses to various stresses, this family in wheat (Triticum aestivum L.) is still poorly understood. In this study, 55 wheat cystatins (TaCystatins) were identified. All TaCystatins were divided into three groups and both the conserved gene structures and peptide motifs were relatively conserved within each group. Homoeolog analysis suggested that both homoeolog retention percentage and gene duplications contributed to the abundance of the TaCystatin family. Analysis of duplication events confirmed that segmental duplications played an important role in the duplication patterns. The results of codon usage pattern analysis showed that TaCystatins had evident codon usage bias, which was mainly affected by mutation pressure. TaCystatins may be regulated by cis-acting elements, especially abscisic acid and methyl jasmonate responsive elements. In addition, the expression of all selected TaCystatins was significantly changed following viral infection and cold stress, suggesting potential roles in response to biotic and abiotic challenges. Overall, our work provides new insights into TaCystatins during wheat evolution and will help further research to decipher the roles of TaCystatins under diverse stress conditions.


2021 ◽  
Vol 12 (3) ◽  
pp. 2028-2046
Author(s):  
Mallikarjun S Beelagi ◽  
Uma Bharathi Indrabalan ◽  
Sharanagouda S Patil ◽  
Suresh K P ◽  
Shiva Prasad Kollur ◽  
...  

Kyasanur Forest Disease was first evolved in the Kyasanur forest, Karnataka. The transmission of the virus has occurred from the monkey to the human by the tick vector. On the early day of viral spread, the disease was restricted to the surrounded region of Kyasanur forest, Shimoga district. But in the present days, the disease has been spreading to neighboring districts and states as well. So, this study involves estimation of codon bias among the gene C, gene E, gene prM, and gene NS5 of the KFD virus and rate of evolution with phylogenetic analysis. The codon usage analysis has revealed the moderate codon bias among all the selected genes and the role of mutation pressure in genes- C and E and natural selection in genes- prM and NS5. Also, the tMRCA age was 1942, 1982, 1975, and 1931 of genes- C, E, prM, and NS5, respectively, of the KFD virus. The integrated analysis of codon usage bias and evolutionary rate analysis signifies that both mutational pressure and natural selection among the selected genes of the KFD virus.


2021 ◽  
Vol 118 (26) ◽  
pp. e2015568118
Author(s):  
Erol Akçay ◽  
David Hirshleifer

The thoughts and behaviors of financial market participants depend upon adopted cultural traits, including information signals, beliefs, strategies, and folk economic models. Financial traits compete to survive in the human population and are modified in the process of being transmitted from one agent to another. These cultural evolutionary processes shape market outcomes, which in turn feed back into the success of competing traits. This evolutionary system is studied in an emerging paradigm, social finance. In this paradigm, social transmission biases determine the evolution of financial traits in the investor population. It considers an enriched set of cultural traits, both selection on traits and mutation pressure, and market equilibrium at different frequencies. Other key ingredients of the paradigm include psychological bias, social network structure, information asymmetries, and institutional environment.


2021 ◽  
Vol 118 (26) ◽  
pp. e2015571118
Author(s):  
David Hirshleifer ◽  
Joshua B. Plotkin

Biased information about the payoffs received by others can drive innovation, risk taking, and investment booms. We study this cultural phenomenon using a model based on two premises. The first is a tendency for large successes, and the actions that lead to them, to be more salient to onlookers than small successes or failures. The second premise is selection neglect—the failure of observers to adjust for biased observation. In our model, each firm in sequence chooses to adopt or to reject a project that has two possible payoffs, one positive and one negative. The probability of success is higher in the high state of the world than in the low state. Each firm observes the payoffs received by past adopters before making its decision, but there is a chance that an adopter’s outcome will be censored, especially if the payoff was negative. Failure to account for biased censorship causes firms to become overly optimistic, leading to irrational booms in adoption. Booms may eventually collapse, or may last forever. We describe these effects as a form of cultural evolution, with adoption or rejection viewed as traits transmitted between firms. Evolution here is driven not only by differential copying of successful traits, but also by cognitive reasoning about which traits are more likely to succeed—quantified using the Price Equation to decompose the effects of mutation pressure and evolutionary selection. This account provides an explanation for investment booms, merger and initial public offering waves, and waves of technological innovation.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 912
Author(s):  
Saadullah Khattak ◽  
Mohd Ahmar Rauf ◽  
Qamar Zaman ◽  
Yasir Ali ◽  
Shabeen Fatima ◽  
...  

The ongoing outbreak of coronavirus disease COVID-19 is significantly implicated by global heterogeneity in the genome organization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The causative agents of global heterogeneity in the whole genome of SARS-CoV-2 are not well characterized due to the lack of comparative study of a large enough sample size from around the globe to reduce the standard deviation to the acceptable margin of error. To better understand the SARS-CoV-2 genome architecture, we have performed a comprehensive analysis of codon usage bias of sixty (60) strains to get a snapshot of its global heterogeneity. Our study shows a relatively low codon usage bias in the SARS-CoV-2 viral genome globally, with nearly all the over-preferred codons’ A.U. ended. We concluded that the SARS-CoV-2 genome is primarily shaped by mutation pressure; however, marginal selection pressure cannot be overlooked. Within the A/U rich virus genomes of SARS-CoV-2, the standard deviation in G.C. (42.91% ± 5.84%) and the GC3 value (30.14% ± 6.93%) points towards global heterogeneity of the virus. Several SARS-CoV-2 viral strains were originated from different viral lineages at the exact geographic location also supports this fact. Taking all together, these findings suggest that the general root ancestry of the global genomes are different with different genome’s level adaptation to host. This research may provide new insights into the codon patterns, host adaptation, and global heterogeneity of SARS-CoV-2.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2739
Author(s):  
Utsang Kumar ◽  
Rekha Khandia ◽  
Shailja Singhal ◽  
Nidhi Puranik ◽  
Meghna Tripathi ◽  
...  

Uneven codon usage within genes as well as among genomes is a usual phenomenon across organisms. It plays a significant role in the translational efficiency and evolution of a particular gene. EPB41L3 is a tumor suppressor protein-coding gene, and in the present study, the pattern of codon usage was envisaged. The full-length sequences of the EPB41L3 gene for the human, brown rat, domesticated cattle, and Sumatran orangutan available at the NCBI were retrieved and utilized to analyze CUB patterns across the selected mammalian species. Compositional properties, dinucleotide abundance, and parity analysis showed the dominance of A and G whilst RSCU analysis indicated the dominance of G/C-ending codons. The neutrality plot plotted between GC12 and GC3 to determine the variation between the mutation pressure and natural selection indicated the dominance of selection pressure (R = 0.926; p < 0.00001) over the three codon positions across the gene. The result is in concordance with the codon adaptation index analysis and the ENc-GC3 plot analysis, as well as the translational selection index (P2). Overall selection pressure is the dominant pressure acting during the evolution of the EPB41L3 gene.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10450
Author(s):  
Xiaowei Huo ◽  
Sisi Liu ◽  
Yimin Li ◽  
Hao Wei ◽  
Jing Gao ◽  
...  

Background Rheum palmatum is an endangered and important medicinal plant in Asian countries, especially in China. However, there is little knowledge about the codon usage bias for R. palmatum CDSs. In this project, codon usage bias was determined based on the R. palmatum 2,626 predicted CDSs from R. palmatum transcriptome. Methods In this study, all codon usage bias parameters and nucleotide compositions were calculated by Python script, Codon W, DNA Star, CUSP of EMBOSS. Results The average GC and GC3 content are 46.57% and 46.6%, respectively, the results suggested that there exists a little more AT than GC in the R. palmatum genes, and the codon bias of R. palmatum genes preferred to end with A/T. We concluded that the codon bias in R. palmatum was affect by nucleotide composition, mutation pressure, natural selection, gene expression levels, and the mutation pressure is the prominent factor. In addition, we figured out 28 optimal codons and most of them ended with A or U. The project here can offer important information for further studies on enhancing the gene expression using codon optimization in heterogeneous expression system, predicting the genetic and evolutionary mechanisms in R. palmatum.


Sign in / Sign up

Export Citation Format

Share Document