scholarly journals Yeast mitochondrial DNA polymerase is related to the family A DNA polymerases

1990 ◽  
Vol 18 (22) ◽  
pp. 6716-6716 ◽  
Author(s):  
Junetsu Ito ◽  
Dan K. Braithwaite
Mitochondrion ◽  
2019 ◽  
Vol 49 ◽  
pp. 166-177
Author(s):  
Carlos H. Trasviña-Arenas ◽  
Nallely Hoyos-Gonzalez ◽  
Atzimba Y. Castro-Lara ◽  
Annia Rodriguez-Hernandez ◽  
María E. Sanchez-Sandoval ◽  
...  

2018 ◽  
Vol 29 (21) ◽  
pp. 2540-2552 ◽  
Author(s):  
Jeniffer Concepción-Acevedo ◽  
Jonathan C. Miller ◽  
Michael J. Boucher ◽  
Michele M. Klingbeil

Trypanosoma brucei has a unique catenated mitochondrial DNA (mtDNA) network called kinetoplast DNA (kDNA). Replication of kDNA occurs once per cell cycle in near synchrony with nuclear S phase and requires the coordination of many proteins. Among these are three essential DNA polymerases (TbPOLIB, IC, and ID). Localization dynamics of these proteins with respect to kDNA replication stages and how they coordinate their functions during replication are not well understood. We previously demonstrated that TbPOLID undergoes dynamic localization changes that are coupled to kDNA replication events. Here, we report the localization of TbPOLIC, a second essential DNA polymerase, and demonstrate the accumulation of TbPOLIC foci at active kDNA replication sites (antipodal sites) during stage II of the kDNA duplication cycle. While TbPOLIC was undetectable by immunofluorescence during other cell cycle stages, steady-state protein levels measured by Western blot remained constant. TbPOLIC foci colocalized with the fraction of TbPOLID that localized to the antipodal sites. However, the partial colocalization of the two essential DNA polymerases suggests a highly dynamic environment at the antipodal sites to coordinate the trafficking of replication proteins during kDNA synthesis. These data indicate that cell cycle–dependent localization is a major regulatory mechanism for essential mtDNA polymerases during kDNA replication.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1809-1824 ◽  
Author(s):  
Balaji Iyengar ◽  
John Roote ◽  
Ana Regina Campos

AbstractFrom a screen of pupal lethal lines of Drosophila melanogaster we identified a mutant strain that displayed a reproducible reduction in the larval response to light. Moreover, this mutant strain showed defects in the development of the adult visual system and failure to undergo behavioral changes characteristic of the wandering stage. The foraging third instar larvae remained in the food substrate for a prolonged period and died at or just before pupariation. Using a new assay for individual larval photobehavior we determined that the lack of response to light in these mutants was due to a primary deficit in locomotion. The mutation responsible for these phenotypes was mapped to the lethal complementation group l(2)34Dc, which we renamed tamas (translated from Sanskrit as “dark inertia”). Sequencing of mutant alleles demonstrated that tamas codes for the mitochondrial DNA polymerase catalytic subunit (DNApol-γ125).


Sign in / Sign up

Export Citation Format

Share Document