scholarly journals Survey of four different photoreactive moieties for DNA photoaffinity labeling of yeast RNA polymerase III transcription complexes

1998 ◽  
Vol 26 (6) ◽  
pp. 1421-1426 ◽  
Author(s):  
J. J. Tate ◽  
J. Persinger ◽  
B. Bartholomew
1994 ◽  
Vol 14 (3) ◽  
pp. 2147-2158
Author(s):  
R J Maraia ◽  
D J Kenan ◽  
J D Keene

Ample evidence indicates that Alu family interspersed elements retrotranspose via primary transcripts synthesized by RNA polymerase III (pol III) and that this transposition sometimes results in genetic disorders in humans. However, Alu primary transcripts can be processed posttranscriptionally, diverting them away from the transposition pathway. The pol III termination signal of a well-characterized murine B1 (Alu-equivalent) element inhibits RNA 3' processing, thereby stabilizing the putative transposition intermediary. We used an immobilized template-based assay to examine transcription termination by VA1, 7SL, and Alu class III templates and the role of transcript release in the pol III terminator-dependent inhibition of processing of B1-Alu transcripts. We found that the RNA-binding protein La confers this terminator-dependent 3' processing inhibition on transcripts released from the B1-Alu template. Using pure recombinant La protein and affinity-purified transcription complexes, we also demonstrate that La facilitates multiple rounds of transcription reinitiation by pol III. These results illustrate an important role for La in RNA production by demonstrating its ability to clear the termination sites of class III templates, thereby promoting efficient use of transcription complexes by pol III. The role of La as a potential regulatory factor in transcript maturation and how this might apply to Alu interspersed elements is discussed.


1994 ◽  
Vol 14 (3) ◽  
pp. 1806-1814 ◽  
Author(s):  
H S Sullivan ◽  
L S Young ◽  
C N White ◽  
K U Sprague

Constitutive and silk gland-specific tRNA(Ala) genes from silkworms have very different transcriptional properties in vitro. Typically, the constitutive type, which encodes tRNA(AlaC), directs transcription much more efficiently than does the silk gland-specific type, which encodes tRNA(AlaSG). We think that the inefficiency of the tRNA(AlaCG) gene underlies its capacity to be turned off in non-silk gland cells. An economical model is that the tRNA(AlaSG) promoter interacts poorly, relative to the tRNA(AlaC) promoter, with one or more components of the basal transcription machinery. As a consequence, the tRNA(AlaSG) gene directs the formation of fewer transcription complexes or of complexes with reduced cycling ability. Here we show that the difference in the number of active transcription complexes accounts for the difference in tRNA(AlaC) and tRNA(AlaSG) transcription rates. To determine whether a particular component of the silkworm transcription machinery is responsible for reduced complex formation on the tRNA(AlaSG) gene, we measured competition by templates for defined fractions of this machinery. We find that the tRNA(AlaSG) gene is greatly impaired, in comparison with the tRNA(AlaC) gene, in competition for either TFIIIB or RNA polymerase III. Competition for each of these fractions is also strongly influenced by the nature of the 5' flanking sequence, the promoter element responsible for the distinctive transcriptional properties of tRNA(AlaSG) and tRNA(AlaC) genes. These results suggest that differential interaction with TFIIIB or RNA polymerase III is a critical functional distinction between these genes.


2010 ◽  
Vol 17 (5) ◽  
pp. 635-640 ◽  
Author(s):  
Zarmik Moqtaderi ◽  
Jie Wang ◽  
Debasish Raha ◽  
Robert J White ◽  
Michael Snyder ◽  
...  

Cell ◽  
1997 ◽  
Vol 88 (5) ◽  
pp. 707-715 ◽  
Author(s):  
Hao Fan ◽  
Amy L Sakulich ◽  
John L Goodier ◽  
Xiaolong Zhang ◽  
Jun Qin ◽  
...  

1994 ◽  
Vol 14 (3) ◽  
pp. 2147-2158 ◽  
Author(s):  
R J Maraia ◽  
D J Kenan ◽  
J D Keene

Ample evidence indicates that Alu family interspersed elements retrotranspose via primary transcripts synthesized by RNA polymerase III (pol III) and that this transposition sometimes results in genetic disorders in humans. However, Alu primary transcripts can be processed posttranscriptionally, diverting them away from the transposition pathway. The pol III termination signal of a well-characterized murine B1 (Alu-equivalent) element inhibits RNA 3' processing, thereby stabilizing the putative transposition intermediary. We used an immobilized template-based assay to examine transcription termination by VA1, 7SL, and Alu class III templates and the role of transcript release in the pol III terminator-dependent inhibition of processing of B1-Alu transcripts. We found that the RNA-binding protein La confers this terminator-dependent 3' processing inhibition on transcripts released from the B1-Alu template. Using pure recombinant La protein and affinity-purified transcription complexes, we also demonstrate that La facilitates multiple rounds of transcription reinitiation by pol III. These results illustrate an important role for La in RNA production by demonstrating its ability to clear the termination sites of class III templates, thereby promoting efficient use of transcription complexes by pol III. The role of La as a potential regulatory factor in transcript maturation and how this might apply to Alu interspersed elements is discussed.


1992 ◽  
Vol 226 (1) ◽  
pp. 47-58 ◽  
Author(s):  
George A. Kassavetis ◽  
Jaime A. Blanco ◽  
Terence E. Johnson ◽  
E.Peter Geiduschek

1994 ◽  
Vol 14 (3) ◽  
pp. 1806-1814
Author(s):  
H S Sullivan ◽  
L S Young ◽  
C N White ◽  
K U Sprague

Constitutive and silk gland-specific tRNA(Ala) genes from silkworms have very different transcriptional properties in vitro. Typically, the constitutive type, which encodes tRNA(AlaC), directs transcription much more efficiently than does the silk gland-specific type, which encodes tRNA(AlaSG). We think that the inefficiency of the tRNA(AlaCG) gene underlies its capacity to be turned off in non-silk gland cells. An economical model is that the tRNA(AlaSG) promoter interacts poorly, relative to the tRNA(AlaC) promoter, with one or more components of the basal transcription machinery. As a consequence, the tRNA(AlaSG) gene directs the formation of fewer transcription complexes or of complexes with reduced cycling ability. Here we show that the difference in the number of active transcription complexes accounts for the difference in tRNA(AlaC) and tRNA(AlaSG) transcription rates. To determine whether a particular component of the silkworm transcription machinery is responsible for reduced complex formation on the tRNA(AlaSG) gene, we measured competition by templates for defined fractions of this machinery. We find that the tRNA(AlaSG) gene is greatly impaired, in comparison with the tRNA(AlaC) gene, in competition for either TFIIIB or RNA polymerase III. Competition for each of these fractions is also strongly influenced by the nature of the 5' flanking sequence, the promoter element responsible for the distinctive transcriptional properties of tRNA(AlaSG) and tRNA(AlaC) genes. These results suggest that differential interaction with TFIIIB or RNA polymerase III is a critical functional distinction between these genes.


Sign in / Sign up

Export Citation Format

Share Document