silk gland
Recently Published Documents


TOTAL DOCUMENTS

414
(FIVE YEARS 66)

H-INDEX

38
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Zhiqian Li ◽  
Lang You ◽  
Qichao Zhang ◽  
Ye Yu ◽  
Anjiang Tan

The domesticated silkworm, Bombyx mori, is an economically important insect that synthesizes large amounts of silk proteins in its silk gland to make cocoons. In recent years, germline transformation strategies advanced the bioengineering of the silk gland as an ideal bioreactor for mass production of recombinant proteins. However, the yield of exogenous proteins varied largely due to the random insertion and gene drift caused by canonical transposon-based transformation, calling for site-specific and stable expression systems. In the current study, we established a targeted in-fusion expression system by using the transcription activator-like effector nuclease (TALEN)-mediated targeted insertion to target genomic locus of sericin, one of the major silk proteins. We successfully generated chimeric Sericin1-EGFP (Ser-2A-EGFP) transformant, producing up to 3.1% (w/w) of EGFP protein in the cocoon shell. With this strategy, we further expressed the medically important human epidermal growth factor (hEGF) and the protein yield in both middle silk glands, and cocoon shells reached to more than 15-fold higher than the canonical piggyBac-based transgenesis. This natural Sericin1 expression system provides a new strategy for producing recombinant proteins by using the silkworm silk gland as the bioreactor.


2022 ◽  
Author(s):  
Kaiyu Guo ◽  
Xiaolu Zhang ◽  
Dongchao Zhao ◽  
Lixia Qin ◽  
Wenchao Jiang ◽  
...  
Keyword(s):  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259870
Author(s):  
Yan Ma ◽  
Qiwei Sun ◽  
Lihua Huang ◽  
Qin Luo ◽  
Wenhui Zeng ◽  
...  

Transcription factors (TFs) are key proteins that modulate gene transcription and thereby lead to changes in the gene expression profile and the subsequent alteration of cellular functions. In the silk gland (SG) of silkworm Bombyx mori, an important silk-producing insect, TFs are of vital importance in the regulation of silk protein synthesis in this organ. However, which TFs exist and express in the SG remains largely unknown. Here, we report the large-scale identification of TFs in the SG based on available full-length transcript sequences and the most recent version of silkworm genome data. In total, 348 candidate TFs were identified by strict filtration and were classified into 56 TF families. Chromosomal distribution, motif composition, and phylogenetic relationship analyses revealed the typical characteristics of these TFs. In addition, the expression patterns of 348 TFs in various tissues of B. mori, especially the SG of fourth-molt (4LM) and day-3 and day-4 fifth-instar (5L3D and 5L4D) larvae, were investigated based on public RNA-seq data and gene microarray data, followed by spatiotemporal verification of TF expression levels by quantitative real-time PCR (qRT-PCR). This report describes the first comprehensive analysis of TFs in the B. mori SG. The results can serve as a baseline for further studies of the roles of TFs in the B. mori SG.


2021 ◽  
pp. 112951
Author(s):  
Tai-Hang Liu ◽  
Xiao-Long Dong ◽  
Peng Chen ◽  
Qian Zhang ◽  
Xiao-Lin Zhou ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Ma ◽  
Qin Luo ◽  
Yao Ou ◽  
Yiyun Tang ◽  
Wenhui Zeng ◽  
...  

AbstractThe silkworm, Bombyx mori, is a silk-producing insect that has contributed greatly to human society. The silk gland of B. mori is a specialized organ responsible for synthesizing silk fibroin and sericin proteins under control of numerous factors. However, which factors are involved in direct silk protein synthesis regulation remains largely unknown. We report the identification of promoter-interacting proteins (PIPs) necessary for the regulation of genes encoding fibroin proteins, including the fibroin heavy chain (fibH), fibroin light chain (fibL), and a 25-kD polypeptide protein (P25). In the fourth larval molting stage (M4) or day 5 fifth-instar larvae (L5D5), a total of 198, 292, and 247 or 330, 305, and 460 proteins interacting with the promoter region of fibH, fibL and P25, respectively, were identified from the posterior silk gland by DNA pull-down combined with mass spectrometry. Many PIPs were particularly involved in ribosome- and metabolism-related pathways. Additionally, 135 and 212 proteins were identified as common PIPs of fibH, fibL and P25 in M4 and L5D5, respectively. Among all PIPs, we identified 31 potential transcription factors, such as Y-box and poly A-binding proteins, which play roles in nucleotide binding, ATP binding, or protein folding. This study provides the first in-depth profile of proteins interacting with fibroin gene promoters and contributes to a better understanding of silk protein synthesis regulation.


2021 ◽  
Vol 22 (15) ◽  
pp. 8246
Author(s):  
Michal Rindos ◽  
Lucie Kucerova ◽  
Lenka Rouhova ◽  
Hana Sehadova ◽  
Michal Sery ◽  
...  

Many lepidopteran larvae produce silk feeding shelters and cocoons to protect themselves and the developing pupa. As caterpillars evolved, the quality of the silk, shape of the cocoon, and techniques in forming and leaving the cocoon underwent a number of changes. The silk of Pseudoips prasinana has previously been studied using X-ray analysis and classified in the same category as that of Bombyx mori, suggesting that silks of both species have similar properties despite their considerable phylogenetic distance. In the present study, we examined P. prasinana silk using ‘omics’ technology, including silk gland RNA sequencing (RNA-seq) and a mass spectrometry-based proteomic analysis of cocoon proteins. We found that although the central repetitive amino acid sequences encoding crystalline domains of fibroin heavy chain molecules are almost identical in both species, the resulting fibers exhibit quite different mechanical properties. Our results suggest that these differences are most probably due to the higher content of fibrohexamerin and fibrohexamerin-like molecules in P. prasinana silk. Furthermore, we show that whilst P. prasinana cocoons are predominantly made of silk similar to that of other Lepidoptera, they also contain a second, minor silk type, which is present only at the escape valve.


2021 ◽  
Vol 118 (31) ◽  
pp. e2107065118
Author(s):  
Nobuaki Kono ◽  
Hiroyuki Nakamura ◽  
Masaru Mori ◽  
Yuki Yoshida ◽  
Rintaro Ohtoshi ◽  
...  

Dragline silk of golden orb-weaver spiders (Nephilinae) is noted for its unsurpassed toughness, combining extraordinary extensibility and tensile strength, suggesting industrial application as a sustainable biopolymer material. To pinpoint the molecular composition of dragline silk and the roles of its constituents in achieving its mechanical properties, we report a multiomics approach, combining high-quality genome sequencing and assembly, silk gland transcriptomics, and dragline silk proteomics of four Nephilinae spiders. We observed the consistent presence of the MaSp3B spidroin unique to this subfamily as well as several nonspidroin SpiCE proteins. Artificial synthesis and the combination of these components in vitro showed that the multicomponent nature of dragline silk, including MaSp3B and SpiCE, along with MaSp1 and MaSp2, is essential to realize the mechanical properties of spider dragline silk.


Sign in / Sign up

Export Citation Format

Share Document