scholarly journals Electron microscopic evidence for splicing of Moloney murine leukemia virus RNAs

1978 ◽  
Vol 5 (9) ◽  
pp. 3219-3230 ◽  
Author(s):  
Amos Panet ◽  
Marian Gorecki ◽  
Susan Bratosin ◽  
Yosef Aloni
2004 ◽  
Vol 78 (20) ◽  
pp. 10927-10938 ◽  
Author(s):  
Catherine S. Hibbert ◽  
Jane Mirro ◽  
Alan Rein

ABSTRACT Prior work by others has shown that insertion of ψ (i.e., leader) sequences from the Moloney murine leukemia virus (MLV) genome into the 3′ untranslated region of a nonviral mRNA leads to the specific encapsidation of this RNA in MLV particles. We now report that these RNAs are, like genomic RNAs, encapsidated as dimers. These dimers have the same thermostability as MLV genomic RNA dimers; like them, these dimers are more stable if isolated from mature virions than from immature virions. We characterized encapsidated mRNAs containing deletions or truncations of MLV ψ or with ψ sequences from MLV-related acute transforming viruses. The results indicate that the dimeric linkage in genomic RNA can be completely attributed to the ψ region of the genome. While this conclusion agrees with earlier electron microscopic studies on mature MLV dimers, it is the first evidence as to the site of the linkage in immature dimers for any retrovirus. Since the Ψ+ mRNA is not encapsidated as well as genomic RNA, it is only present in a minority of virions. The fact that it is nevertheless dimeric argues strongly that two of these molecules are packaged into particles together. We also found that the kissing loop is unnecessary for this coencapsidation or for the stability of mature dimers but makes a major contribution to the stability of immature dimers. Our results are consistent with the hypothesis that the packaging signal involves a dimeric structure in which the RNAs are joined by intermolecular interactions between GACG loops.


2005 ◽  
Vol 79 (13) ◽  
pp. 8142-8148 ◽  
Author(s):  
Catherine S. Hibbert ◽  
Alan Rein

ABSTRACT Retrovirus particles contain two copies of their genomic RNA, held together in a dimer by linkages which presumably consist of a limited number of base pairs. In an effort to localize these linkages, we digested deproteinized RNA from Moloney murine leukemia virus (MLV) particles with RNase H in the presence of oligodeoxynucleotides complementary to specific sites in viral RNA. The cleaved RNAs were then characterized by nondenaturing gel electrophoresis. We found that fragments composed of nucleotides 1 to 754 were dimeric, with a linkage as thermostable as that between dimers of intact genomic RNA. In contrast, there was no stable linkage between fragments consisting of nucleotides 755 to 8332. Thus, the most stable linkage between monomers is on the 5′ side of nucleotide 754. This conclusion is in agreement with earlier electron microscopic analyses of partially denatured viral RNAs and with our study (C. S. Hibbert, J. Mirro, and A. Rein, J. Virol. 78:10927-10938, 2004) of encapsidated nonviral mRNAs containing inserts of viral sequence. We obtained similar results with RNAs from immature MLV particles, in which the dimeric linkage is different from that in mature particles and has not previously been localized. The 5′ and 3′ fragments of cleaved RNA are all held together by thermolabile linkages, indicating the presence of tethering interactions between bases 5′ and bases 3′ of the cleavage site. When RNAs from mature particles were cleaved at nucleotide 1201, we detected tethering interactions spanning the cleavage site which are intramonomeric and are as strong as the most stable linkage between the monomers.


Sign in / Sign up

Export Citation Format

Share Document