Highly inducible cell lines derived from mice genetically transmitting the Moloney murine leukemia virus genome.

1979 ◽  
Vol 29 (3) ◽  
pp. 899-906 ◽  
Author(s):  
L Bacheler ◽  
R Jaenisch ◽  
H Fan
Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3385-3391 ◽  
Author(s):  
Stephane Barrette ◽  
Janet L. Douglas ◽  
Nancy E. Seidel ◽  
David M. Bodine

Abstract The low levels of transduction of human hematopoietic stem cells (HSCs) with Moloney murine leukemia virus (MLV) vectors have been an obstacle to gene therapy for hematopoietic diseases. It has been demonstrated that lentivirus vectors are more efficient than MLV vectors at transducing nondividing cell lines as well as human CD34+ cells and severe combined immunodeficiency disease repopulating cells. We compared transduction of cell lines and Lin− bone marrow cells, using a vesicular stomatitis virus G (VSV-G)-pseudotyped lentivirus or MLV vectors carrying a green fluorescent protein marker gene. As predicted, the lentivirus vector was more efficient at transducing mouse and human growth-inhibited cell lines. The transduction of mouse HSC by lentivirus vectors was compared directly to MLV vectors in a co-transduction assay. In this assay, transduction by ecotropic MLV is a positive internal control for downstream steps in retrovirus transduction, including cell division. Both the VSV-G lentivirus and MLV vectors transduced mouse HSCs maintained in cytokine-free medium at very low frequency, as did the ecotropic control. The lentivirus vector and the MLV vector were equally efficient at transducing bone marrow HSCs cultured in interleukin 3 (IL-3), IL-6, and stem cell factor for 96 hours. In conclusion, although lentivirus vectors are able to transduce growth-inhibited cell lines, the cell cycle status of HSCs render them resistant to lentivirus-mediated transduction, and it is hypothesized that entry into cycle, not necessarily division, may be a requirement for efficient lentivirus-mediated transduction.


Blood ◽  
2000 ◽  
Vol 96 (10) ◽  
pp. 3385-3391 ◽  
Author(s):  
Stephane Barrette ◽  
Janet L. Douglas ◽  
Nancy E. Seidel ◽  
David M. Bodine

The low levels of transduction of human hematopoietic stem cells (HSCs) with Moloney murine leukemia virus (MLV) vectors have been an obstacle to gene therapy for hematopoietic diseases. It has been demonstrated that lentivirus vectors are more efficient than MLV vectors at transducing nondividing cell lines as well as human CD34+ cells and severe combined immunodeficiency disease repopulating cells. We compared transduction of cell lines and Lin− bone marrow cells, using a vesicular stomatitis virus G (VSV-G)-pseudotyped lentivirus or MLV vectors carrying a green fluorescent protein marker gene. As predicted, the lentivirus vector was more efficient at transducing mouse and human growth-inhibited cell lines. The transduction of mouse HSC by lentivirus vectors was compared directly to MLV vectors in a co-transduction assay. In this assay, transduction by ecotropic MLV is a positive internal control for downstream steps in retrovirus transduction, including cell division. Both the VSV-G lentivirus and MLV vectors transduced mouse HSCs maintained in cytokine-free medium at very low frequency, as did the ecotropic control. The lentivirus vector and the MLV vector were equally efficient at transducing bone marrow HSCs cultured in interleukin 3 (IL-3), IL-6, and stem cell factor for 96 hours. In conclusion, although lentivirus vectors are able to transduce growth-inhibited cell lines, the cell cycle status of HSCs render them resistant to lentivirus-mediated transduction, and it is hypothesized that entry into cycle, not necessarily division, may be a requirement for efficient lentivirus-mediated transduction.


Blood ◽  
1989 ◽  
Vol 74 (2) ◽  
pp. 876-881 ◽  
Author(s):  
RA Hock ◽  
AD Miller ◽  
WR Osborne

Adenosine deaminase (ADA) deficiency is associated with a fatal severe combined immunodeficiency. Because most patients do not have a suitable marrow donor, the introduction of a normal ADA gene into the patient's marrow cells is a potentially useful alternative therapy. To identify vectors that provide optimal gene expression in human hematopoietic cells, we investigated retroviral vectors containing the ADA gene under the transcriptional control of the promoter/enhancers of Moloney murine leukemia virus, the simian virus 40 early region, the cytomegalovirus immediate-early gene, the lymphotropic papovavirus, and the human beta- globin gene. ADA expression from these vectors was monitored in the ADA- human histiocytic lymphoma cell line DHL-9, and in the multipotential chronic myeloid leukemia cell line K562. ADA expression in infected K562 cells was also measured after induction of megakaryoblastic differentiation by phorbol ester, and after induction of erythroid differentiation by sodium n-butyrate or hemin. In these hematopoietic cell lines, the vectors that contained ADA controlled by either the Moloney murine leukemia virus promoter (LASN) or the cytomegalovirus promoter (LNCA) expressed ADA at much higher levels than the other vectors tested. Furthermore, in K562 cells infected with LASN and LNCA vectors, induction of terminal differentiation resulted in the same or higher level expression of ADA. These cell lines have permitted the evaluation of transduced gene expression in proliferating and differentiating hematopoietic cells that provide a model for bone marrow-targeted gene therapy.


1987 ◽  
Vol 7 (3) ◽  
pp. 1101-1110 ◽  
Author(s):  
N A Speck ◽  
D Baltimore

Binding sites for six distinct nuclear factors on the 75-base-pair repeat of the Moloney murine leukemia virus enhancer have been identified by an electrophoretic mobility shift assay combined with methylation interference. Three of these factors, found in WEHI 231 nuclear extracts, which we have named LVa, LVb, and LVc (for leukemia virus factors a, b, and c) have not been previously identified. Nuclear factors that bind to the conserved simian virus 40 corelike motif, the NF-1 motif, and the glucocorticoid response element were also detected. Testing of multiple cell lines showed that most factors appeared ubiquitous, except that the NF-1 binding factor was found neither in nuclear extracts from MEL cells nor in the embryonal carcinoma cell lines PCC4 and F9, and core-binding factor was relatively depleted from MEL and F9 nuclear extracts.


Sign in / Sign up

Export Citation Format

Share Document