unintegrated dna
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 1)

H-INDEX

9
(FIVE YEARS 0)

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2248
Author(s):  
Stephen P. Goff

Retroviral infection delivers an RNA genome into the cytoplasm that serves as the template for the synthesis of a linear double-stranded DNA copy by the viral reverse transcriptase. Within the nucleus this linear DNA gives rise to extrachromosomal circular forms, and in a key step of the life cycle is inserted into the host genome to form the integrated provirus. The unintegrated DNA forms, like those of DNAs entering cells by other means, are rapidly loaded with nucleosomes and heavily silenced by epigenetic histone modifications. This review summarizes our present understanding of the silencing machinery for the DNAs of the mouse leukemia viruses and human immunodeficiency virus type 1. We consider the potential impact of the silencing on virus replication, on the sensing of the virus by the innate immune system, and on the formation of latent proviruses. We also speculate on the changeover to high expression from the integrated proviruses in permissive cell types, and briefly consider the silencing of proviruses even after integration in embryonic stem cells and other developmentally primitive cell types.


2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Faysal Bin Hamid ◽  
Jinsun Kim ◽  
Cha-Gyun Shin
Keyword(s):  

Retrovirology ◽  
2011 ◽  
Vol 8 (1) ◽  
Author(s):  
Richard D Sloan ◽  
Mark A Wainberg

2007 ◽  
Vol 81 (19) ◽  
pp. 10515-10523 ◽  
Author(s):  
Betty Poon ◽  
Michael A. Chang ◽  
Irvin S. Y. Chen

ABSTRACT Unintegrated human immunodeficiency virus (HIV) DNA are viral DNA products formed naturally during HIV replication. While the integrated proviral DNA form is transcriptionally active and results in productive infection, unintegrated DNA is also capable of expression of viral RNA and proteins. Previously, we showed that HIV Vpr enhances expression from integrase-defective HIV. Here we show that Vpr activation of expression is partially dependent upon the presence of a transcriptionally active HIV promoter and results in increased transcription of unspliced gag and spliced nef viral RNA. While Tat is detectable during infection with integrase-defective HIV, Tat levels are not affected by the presence of Vpr. Mutation studies reveal that Tat is dispensable for the Vpr-mediated enhancement of expression from unintegrated DNA. We find that virion-associated Vpr is sufficient for Nef expression from unintegrated viral DNA, resulting in the efficient downregulation of CD4 from the surface of infected cells. These results provide a mechanism by which Nef expression from unintegrated HIV type 1 DNA expression occurs.


2005 ◽  
Vol 79 (8) ◽  
pp. 4691-4699 ◽  
Author(s):  
Wesley M. Konsavage ◽  
Stephen Burkholder ◽  
Malgorzata Sudol ◽  
Amy L. Harper ◽  
Michael Katzman

ABSTRACT Retroviral integrase prepares viral DNA for integration by removing 2 nucleotides from each end of unintegrated DNA in a reaction referred to as processing. However, it has been known since the processing assay was first described that avian integrases frequently nick 3 nucleotides, as well as 2 nucleotides, from viral DNA ends when reaction mixtures contain Mn2+. We now report that specificity for the biologically relevant “−2” site is enhanced when the serine at amino acid 124 of Rous sarcoma virus (RSV) integrase is replaced by alanine, valine, glycine, lysine, or aspartate. The protein with a serine-to-aspartate substitution exhibited especially high fidelity for the correct site, as evidenced by a ratio of −2 nicks to −3 nicks that was more than 40-fold greater than that for the wild-type enzyme in reactions with Mn2+. Even with Mg2+, the substituted proteins exhibited greater specificity than the wild type, especially the S124D protein. Moreover, this protein was more efficient than the wild type at processing viral DNA ends. Unexpectedly, however, the S124D protein was significantly impaired at catalyzing the insertion of viral DNA ends in reactions with Mn2+ and joining was undetectable in reactions with Mg2+. Thus, the S124D protein has separated the processing and joining activities of integrase. Similar results were found for human immunodeficiency virus integrase with the analogous substitution. No proteins with comparable properties have been described. Moreover, RSV virions containing integrase with the S124D mutation were unable to replicate in cell cultures. Together, these data suggest that integrase has evolved to have submaximal processing activity so that it can also catalyze DNA joining.


2004 ◽  
Vol 78 (6) ◽  
pp. 2906-2920 ◽  
Author(s):  
Dyana T. Saenz ◽  
Nils Loewen ◽  
Mary Peretz ◽  
Todd Whitwam ◽  
Román Barraza ◽  
...  

ABSTRACT The circumstances under which unintegrated lentivirus DNA can persist and be a functional template for transcription and protein expression are not clear. We constructed and validated the first class I (nonpleiotropic) integrase (IN) mutants for a non-human lentivirus (feline immunodeficiency virus [FIV]) and analyzed both these and known class I human immunodeficiency virus type 1 IN mutants. The FIV IN mutants (D66V and D66V/D118A) had class I properties: Gag/Pol precursor expression, proteolytic processing, particle formation, and reverse transcriptase (RT) production were normal, while the transduction of dividing fibroblasts was prevented and integration was blocked. When injected into rat retinas, the wild-type (WT) vector produced extensive, persistent transgene expression, compared with only rare positive neuronal cells for the IN mutant vector. In contrast, both WT and mutant vectors produced entirely equivalent, effective transduction levels of primary rat neurons (retinal ganglion cells). By testing the hypothesis that the unexpected retinal neuron transduction was related to cell cycle status, we found that when fibroblasts were growth arrested, transduction and internally promoted transgene expression were not inhibited at all by the class I FIV or HIV-1 IN mutations. Cells were then transduced under aphidicolin arrest and were released from the block 48 h later. Vector expression was stable and durable during repeated passaging in WT vector-transduced cells, while the release of cells transduced with equivalent RT units of class I IN mutant FIV or HIV vector resulted in a steady decline of expression, from 97 to 0% of cells by day 10. Southern blot and PCR analyses showed a lack of integration, irrespective of cell cycle, for the class I mutants and an increase in one- and two-long terminal repeat circular and linear unintegrated DNAs in growth-arrested cells. We conclude that if cell division is prevented, unintegrated FIV and HIV-1 vector DNAs can produce high-level internally promoted transgene expression equivalent to WT vectors. The expression correlates with the unintegrated DNA levels. These observations may facilitate the study of the roles of IN and other preintegration complex components in preintegration phases of infection by (i) providing an alternative way to monitor unintegrated nuclear cDNA forms, (ii) restricting ascertainment to the transcriptionally functional subset of unintegrated DNA, (iii) enabling analysis in individual, nondividing cells, and (iv) uncoupling other potential functions of IN from integration.


2004 ◽  
Vol 78 (5) ◽  
pp. 2472-2477 ◽  
Author(s):  
Thomas Juretzek ◽  
Teresa Holm ◽  
Kathleen Gärtner ◽  
Sylvia Kanzler ◽  
Dirk Lindemann ◽  
...  

ABSTRACT It had been suggested that during integration of spumaretroviruses (foamy viruses) the right (U5) end of the cDNA is processed, while the left (U3) remains uncleaved. We confirmed this hypothesis by sequencing two-long terminal repeat (LTR) circle junctions of unintegrated DNA. Based on an infectious foamy virus molecular clone, a set of constructs harboring mutations at the 5′ end of the U3 region in the 3′ LTR was analyzed for particle export, reverse transcription, and replication. Following transient transfection some mutants were severely impaired in generating infectious virus, while others replicated almost like the wild type. The replication competence of the mutants was unrelated to the cleavability of the newly created U3 end. This became obvious with two mutants both belonging to the high-titer type. One mutant containing a dinucleotide artificially transferred from the right to the left end was trimmed upon integration, while another one with an unrelated dinucleotide in that place was not. The latter construct in particular showed that the canonical TG motif at the beginning of the provirus is not essential for foamy virus integration.


1998 ◽  
Vol 72 (1) ◽  
pp. 817-822 ◽  
Author(s):  
Ayalew Mergia ◽  
Min Wu

ABSTRACT We have cloned proviral DNA of simian foamy virus type 1 (SFV-1) from linear unintegrated DNA (pSFV-1). Transfection of pSFV-1 induces cytopathology in several cell lines with supernatants from the transfected cell culture containing infectious viral particles. Electron microscopy of the transfected cells revealed foamy virus particles. Deletion analysis of pSFV-1 indicated that the transcriptional transactivator (tas) gene located betweenenv and the long terminal repeat is critical for virus replication, whereas the second open reading frame (ORF-2) in this region is dispensable. Although the tas and ORF-2 regions of foamy viruses have significantly diverged, the results presented here suggested that the gene products have similar functions. Recombinant pSFV-1 containing the cat gene was able to transduce the heterologous gene, indicating the utility of SFV-1 as a vector. An infectious clone of SFV-1 which is distantly related to the human foamy virus will provide a means to understand the biology of this unique group of viruses.


Author(s):  
M. Zazzi ◽  
L. Romano ◽  
M. Catucci ◽  
G. Venturi ◽  
A. De Milito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document