scholarly journals GapR binds DNA through dynamic opening of its tetrameric interface

2020 ◽  
Vol 48 (16) ◽  
pp. 9372-9386
Author(s):  
Qian Huang ◽  
Bo Duan ◽  
Xianzhi Dong ◽  
Shilong Fan ◽  
Bin Xia

Abstract GapR is a nucleoid-associated protein that is an essential regulator of chromosome replication in the cell cycle model Caulobacter crescentus. Here, we demonstrate that free GapR is a homotetramer, but not a dimer as previously reported (Guo et al., Cell 175: 583–597, 2018). We have determined the crystal structure of GapR in complex with a 10-bp A-tract DNA, which has an open tetrameric conformation, different from the closed clamp conformation in the previously reported crystal structure of GapR/DNA complex. The free GapR adopts multiple conformations in dynamic exchange equilibrium, with the major conformation resembling the closed tetrameric conformation, while the open tetrameric conformation is a representative of minor conformers. As it is impossible for the circular genomic DNA to get into the central DNA binding tunnel of the major conformation, we propose that GapR initially binds DNA through the open conformation, and then undergoes structural rearrangement to form the closed conformation which fully encircles the DNA. GapR prefers to bind DNA with 10-bp consecutive A/T base pairs nonselectively (Kd ∼12 nM), while it can also bind GC-rich DNA sequence with a reasonable affinity of about 120 nM. Besides, our results suggest that GapR binding results in widening the minor groove of AT-rich DNA, instead of overtwisting DNA.

2018 ◽  
Vol 115 (35) ◽  
pp. 8769-8774 ◽  
Author(s):  
Hemant Kumar ◽  
Janet S. Finer-Moore ◽  
Xiaoxu Jiang ◽  
Irina Smirnova ◽  
Vladimir Kasho ◽  
...  

The lactose permease of Escherichia coli (LacY), a dynamic polytopic membrane transport protein, catalyzes galactoside/H+ symport and operates by an alternating access mechanism that exhibits multiple conformations, the distribution of which is altered by sugar-binding. Camelid nanobodies were made against a double-mutant Gly46 → Trp/Gly262 → Trp (LacYWW) that produces an outward-open conformation, as opposed to the cytoplasmic open-state crystal structure of WT LacY. Nanobody 9047 (Nb9047) stabilizes WT LacY in a periplasmic-open conformation. Here, we describe the X-ray crystal structure of a complex between LacYWW, the high-affinity substrate analog 4-nitrophenyl-α-d-galactoside (NPG), and Nb9047 at 3-Å resolution. The present crystal structure demonstrates that Nb9047 binds to the periplasmic face of LacY, primarily to the C-terminal six-helical bundle, while a flexible loop of the Nb forms a bridge between the N- and C-terminal halves of LacY across the periplasmic vestibule. The bound Nb partially covers the vestibule, yet does not affect the on-rates or off-rates for the substrate binding to LacYWW, which implicates dynamic flexibility of the Nb–LacYWW complex. Nb9047-binding neither changes the overall structure of LacYWW with bound NPG, nor the positions of side chains comprising the galactoside-binding site. The current NPG-bound structure exhibits a more occluded periplasmic vestibule than seen in a previous structure of a (different Nb) apo-LacYWW/Nb9039 complex that we argue is caused by sugar-binding, with major differences located at the periplasmic ends of transmembrane helices in the N-terminal half of LacY.


Author(s):  
Daniela De Luchi ◽  
Isabel Usón ◽  
Glenford Wright ◽  
Catherine Gouyette ◽  
Juan A. Subirana

The crystal structure of the telomeric sequence d(UBrAGG) interacting with an anthraquinone derivative has been solved by MAD. In all previously studied complexes of intercalating drugs, the drug is usually sandwiched between two DNA base pairs. Instead, the present structure looks like a crystal of stacked anthraquinone molecules in which isolated base pairs are intercalated. Unusual base pairs are present in the structure, such as G·G and A·UBrreverse Watson–Crick base pairs.


2016 ◽  
Vol 113 (44) ◽  
pp. 12420-12425 ◽  
Author(s):  
Xin Jiang ◽  
Irina Smirnova ◽  
Vladimir Kasho ◽  
Jianping Wu ◽  
Kunio Hirata ◽  
...  

The lactose permease of Escherichia coli (LacY), a dynamic polytopic membrane protein, catalyzes galactoside–H+ symport and operates by an alternating access mechanism that exhibits multiple conformations, the distribution of which is altered by sugar binding. We have developed single-domain camelid nanobodies (Nbs) against a mutant in an outward (periplasmic)-open conformation to stabilize this state of the protein. Here we describe an X-ray crystal structure of a complex between a double-Trp mutant (Gly46→Trp/Gly262→Trp) and an Nb in which free access to the sugar-binding site from the periplasmic cavity is observed. The structure confirms biochemical data indicating that the Nb binds stoichiometrically with nanomolar affinity to the periplasmic face of LacY primarily to the C-terminal six-helix bundle. The structure is novel because the pathway to the sugar-binding site is constricted and the central cavity containing the galactoside-binding site is empty. Although Phe27 narrows the periplasmic cavity, sugar is freely accessible to the binding site. Remarkably, the side chains directly involved in binding galactosides remain in the same position in the absence or presence of bound sugar.


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 687-703
Author(s):  
Jennifer A. Rudd ◽  
Sandra Hernandez-Aldave ◽  
Ewa Kazimierska ◽  
Louise B. Hamdy ◽  
Odin J. E. Bain ◽  
...  

The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher-value chemical products. Herein, we fabricated a porous copper electrode capable of catalyzing the reduction of carbon dioxide into higher-value products, such as ethylene, ethanol and propanol. We investigated the formation of the foams under different conditions, not only analyzing their morphological and crystal structure, but also documenting their performance as a catalyst. In particular, we studied the response of the foams to CO2 electrolysis, including the effect of urea as a potential additive to enhance CO2 catalysis. Before electrolysis, the pristine and urea-modified foam copper electrodes consisted of a mixture of cuboctahedra and dendrites. After 35 min of electrolysis, the cuboctahedra and dendrites underwent structural rearrangement affecting catalysis performance. We found that alterations in the morphology, crystallinity and surface composition of the catalyst were conducive to the deactivation of the copper foams.


1989 ◽  
Vol 17 (1) ◽  
pp. 55-72 ◽  
Author(s):  
W.B.T. Cruse ◽  
J. Aymani ◽  
Olga Kennard ◽  
Tom Brown ◽  
Audrey G.C. Jack ◽  
...  
Keyword(s):  

1990 ◽  
Vol 9 (3) ◽  
pp. 467-469 ◽  
Author(s):  
L. Van Meervelt ◽  
M. H. Moore ◽  
P. Kong Thoo Lin ◽  
D. M. Brown ◽  
O. Kennard

2014 ◽  
Vol 42 (7) ◽  
pp. 4712-4722 ◽  
Author(s):  
P.-H. Kuo ◽  
C.-H. Chiang ◽  
Y.-T. Wang ◽  
L. G. Doudeva ◽  
H. S. Yuan

2010 ◽  
Vol 55 (1) ◽  
pp. 291-301 ◽  
Author(s):  
John B. Bruning ◽  
Ana C. Murillo ◽  
Ofelia Chacon ◽  
Raúl G. Barletta ◽  
James C. Sacchettini

ABSTRACTd-Alanine:d-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of twod-alanine (d-Ala) molecules to form thed-alanyl:d-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development.d-Cycloserine (DCS), an analog ofd-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure ofMycobacterium tuberculosisDdl at a resolution of 2.1 Å. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoined by several loop regions. TheM. tuberculosisapo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide andd-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP andd-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed ford-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC50) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors.


Sign in / Sign up

Export Citation Format

Share Document