exchange equilibrium
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 15)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 252 ◽  
pp. 1-10
Author(s):  
Maria Ponomareva ◽  
Olga Cheremisina ◽  
Yulia Mashukova ◽  
Elena Lukyantseva

The issues of complex processing of mineral resources are relevant due to the depletion of available raw materials. So, it is necessary to involve technological waste, generated during the processing of raw materials, to obtain valuable components. In the process flow of apatite concentrate treatment using the sulfuric acid method, a large amount of phosphogypsum is produced with an average content of light rare earth metals (REMs) reaching 0.032-0.45 %. When phosphogypsum is treated with sulfuric acid solutions, a part of REMs is transferred to the sulfate solution, from which it can be extracted by means of ion exchange method. The study focuses on sorption recovery of light REMs (praseodymium, neodymium and samarium) in the form of anionic sulfate complexes of the composition [ln(SO4)2]– on polystyrene anion exchanger AN-31. The experiments were performed under static conditions at a liquid-to-solid ratio of 1:1, pH value of 2, temperature of 298 K and initial REM concentration in the solutions ranging from 0.83 to 226.31 mmol/kg. Thermodynamic description of sorption isotherms was carried out by the method based on linearization of the mass action equation, modified for the ion exchange reaction. As a result of performed calculations, the authors obtained the constants of ion exchange equilibrium for Pr, Nd and Sm, as well as the values of the change in the Gibbs energy for the ion exchange of REM sulfate complexes on the AN-31 anion exchanger and the values of total capacity of the anion exchanger. Calculated separation factors indicated low selectivity of AN-31 anionite exchanger for light REMs; however, the anion exchanger is suitable for effective recovery of a sum of light REMs. Based on the average value of ion exchange equilibrium constant for light REMs, parameters of a sorption unit with a fluidized bed of anion exchanger were estimated.


2021 ◽  
Vol 9 ◽  
Author(s):  
Fei Wang ◽  
Qiaoyun Chen ◽  
Jingchen Zhang ◽  
Yingqi Ruan ◽  
Ye Zhuang ◽  
...  

Fracturing fluid imbibition and retention are treated as a main mechanism for oil production from shale reservoirs. However, the oil–water exchange phenomenon during post-fracturing soaking periods has not been thoroughly studied. In this study, a water–oil flow model is built to investigate the water imbibition and oil drainage phenomenon in hydraulically fractured shale. With the developed numerical simulator, the main characteristics of post-fracturing soaking, that is, pressure diffusion, water imbibition, and especially, the oil–water exchange behavior are simulated. Three key time points, that is, oil–water exchange equilibrium, steady exchange efficiency, and oil breakthrough in fracture are found. The oil–water exchange efficiency and exchange volume are also calculated. Moreover, the proposed model is validated by field wellhead pressure dynamics, indicating a relevance of time between the oil–water exchange efficiency and the wellhead pressure falloff derivatives. Finally, the influences of shale permeability, wettability, fracture complexity, and oil viscosity on the oil–water exchange behavior are investigated. Results indicate that the matrix of oil-wet shale almost does not suck water and discharge oil, and only the oil in natural fractures exchanges with the water in hydraulic fractures. The water-wet shale with low permeability, high oil viscosity, and few natural fractures needs extra soaking time to achieve good oil–water exchange performance. The suitable soaking period for the water-wet base case in this study is from 17.25 to 169 days, among which 64 days is the optimal soaking time.


2021 ◽  
Vol 7 (1) ◽  
pp. 28-36
Author(s):  
Quynh Luong Pham ◽  
Hoang Lan Nguyen ◽  
Van Chinh Nguyen ◽  
Huu Anh Vuong ◽  
Cao Nguyen Luu ◽  
...  

The development of cesium selective adsorbent is urgent subject for the decontamination of intermediate and high level water from nuclear facilities especially in nuclear accidents. For the selective adsorption and stable immobilization of radioactive cesium, K-Ni- hexacyanoferrate (II) loaded zeolite (FCzeolite) (synthesized zeolite of Hanoi University of Science and Technology) were prepared by impregnation/precipitation method. The ion exchange equilibrium of Cs+ for composites FC-zeolite was attained within 5 h and estimated to be above 97% in Cs+ 100mg/l solution at pH: 4-10. Ion exchange capacity of Cs+ ions (Qmax) for FC-zeoliteX was reached 158.7 and 98.0 mg/g in pure water and sea water respectively.Those values for FC-zeolite A was 103.1 and 63.7 mg/g. Decontamination factor (DF) of FC-zeolite X for 134Cs was 149.7 và 107.5 in pure water and sea water respectively. Initial radioactivity of 134Cs ion solution infect to decontamination factor. KNiFC-zeolite X after uptaked Cs (CsFC- zeolite X) was solidificated in optimal experimental conditions: Mixing CsFC-zeolite X with additive of Na2B4O7 (5%), temperature calcined 900oC for 2h in air. Solid forms was determined some of parameters: Cs immobilization, mechanical stability, volume reduction after calcination (%) and leaching rate of Cs+ ions in solution.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Annika Starke ◽  
Christoph Pasel ◽  
Christian Bläker ◽  
Tobias Eckardt ◽  
Jens Zimmermann ◽  
...  

Hydrogen sulfide is removed from natural gas via adsorption on zeolites. The process operates very effectively, but there is still potential for improvement. Therefore, in this article, the adsorption of hydrogen sulfide was investigated on eight LTA zeolites with different cation compositions. Starting with the zeolite NaA (4 A), which contains only Na+ cations, the Ca2+ cation content was gradually increased by ion exchange. Equilibrium isotherms from cumulative breakthrough curve experiments in a fixed-bed adsorber at 25°C and 85°C at 1.3 bar (abs.) were determined in the trace range up to a concentration of 2000 ppmmol. From a comparison of the isotherms of the different materials, a mechanistic proposal for the adsorption is developed, taking into account the specific positions of the cations in the zeolite lattice when the degree of exchange is increased. The shape of the isotherms indicates two energetically different types of adsorption sites. It is assumed that two mechanisms are superimposed: a chemisorptive mechanism with dissociation of hydrogen sulfide and covalent bonding of the proton and the hydrogen sulfide ion to the zeolite lattice and a physisorptive mechanism by electrostatic interaction with the cations in the lattice. As the degree of exchange increases, the proportion of chemisorption sites seems to decrease. Above an exchange degree of 50%, only evidence of physisorption can be found. It is shown that this finding points to the involvement of weakly bound sodium cations at cation position III in the chemisorption of hydrogen sulfide.


2021 ◽  
Vol 83 (3) ◽  
pp. 379-386
Author(s):  
I. V. Falina ◽  
N. A. Kononenko ◽  
O. A. Demina ◽  
E. V. Titskaya ◽  
S. A. Loza

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1016
Author(s):  
Alessandro Doldi ◽  
Marco Frittelli

We describe the axiomatic approach to real-valued Systemic Risk Measures, which is a natural counterpart to the nowadays classical univariate theory initiated by Artzner et al. in the seminal paper “Coherent measures of risk”, Math. Finance, (1999). In particular, we direct our attention towards Systemic Risk Measures of shortfall type with random allocations, which consider as eligible, for securing the system, those positions whose aggregated expected utility is above a given threshold. We present duality results, which allow us to motivate why this particular risk measurement regime is fair for both the single agents and the whole system at the same time. We relate Systemic Risk Measures of shortfall type to an equilibrium concept, namely a Systemic Optimal Risk Transfer Equilibrium, which conjugates Bühlmann’s Risk Exchange Equilibrium with a capital allocation problem at an initial time. We conclude by presenting extensions to the conditional, dynamic framework. The latter is the suitable setup when additional information is available at an initial time.


2020 ◽  
Vol 1 (1) ◽  
pp. 11-19
Author(s):  
Ghafoor Ahmed ◽  
Shuela Sheikh-Abdullah

This study aimed to assess potassium(K) 's potential mobility for some soils located in the Kurdistan Region of Iraq. Five soil samples were collected from a depth of (0-30) cm. For each sample, 5g of soil was equilibrated with 50 ml of 0.01 M CaCl2, amended with different K concentrations, and incubated for 24 h at 298 Kelvin. The supernatant was filtered, and K, Ca, and Mg were determined. Potassium exchange equilibrium was calculated from quantity-intensity (Q/I) isotherms. Mean AReK values for all studied soils ranged between 2.4x10-3 to 3.6x10-3(mol L-1)1/2, which reveals that K was preferentially held at inner potions. The amount of labile K(KL) ranged from 0.479 to 1.191cmolc kg-1 in studied soils. The highest value of KL was in Kanypanka while the lowest value was in Goizha. The potential buffering capacity (PBCK) was between 619.56 and 857.37 cmolc kg-1(mol L-1) -1/2. All studied soils were characterized by low percent K saturation and a high ability to replenish K concentration in the soil solution. Gapon selectivity coefficient was relatively high and ranged from 5.64 to 7.88 L mol-1. Higher values of KL indicate a greater K release into the soil solution. Such a high affinity of K to the solid soil phase was attributed to both the elevated organic matter content in these soils and their strong buffering capacities.


2020 ◽  
Vol 118 (1) ◽  
pp. e2016430118
Author(s):  
Edward T. Tipper ◽  
Emily I. Stevenson ◽  
Victoria Alcock ◽  
Alasdair C. G. Knight ◽  
J. Jotautas Baronas ◽  
...  

Rivers carry the dissolved and solid products of silicate mineral weathering, a process that removesCO2from the atmosphere and provides a key negative climate feedback over geological timescales. Here we show that, in some river systems, a reactive exchange pool on river suspended particulate matter, bonded weakly to mineral surfaces, increases the mobile cation flux by 50%. The chemistry of both river waters and the exchange pool demonstrates exchange equilibrium, confirmed by Sr isotopes. Global silicate weathering fluxes are calculated based on riverine dissolved sodium (Na+) from silicate minerals. The large exchange pool supplies Na+of nonsilicate origin to the dissolved load, especially in catchments with widespread marine sediments, or where rocks have equilibrated with saline basement fluids. We quantify this by comparing the riverine sediment exchange pool and river water chemistry. In some basins, cation exchange could account for the majority of sodium in the river water, significantly reducing estimates of silicate weathering. At a global scale, we demonstrate that silicate weathering fluxes are overestimated by 12 to 28%. This overestimation is greatest in regions of high erosion and high sediment loads where the negative climate feedback has a maximum sensitivity to chemical weathering reactions. In the context of other recent findings that reduce the netCO2consumption through chemical weathering, the magnitude of the continental silicate weathering fluxes and its implications for solid EarthCO2degassing fluxes need to be further investigated.


2020 ◽  
Vol 48 (16) ◽  
pp. 9372-9386
Author(s):  
Qian Huang ◽  
Bo Duan ◽  
Xianzhi Dong ◽  
Shilong Fan ◽  
Bin Xia

Abstract GapR is a nucleoid-associated protein that is an essential regulator of chromosome replication in the cell cycle model Caulobacter crescentus. Here, we demonstrate that free GapR is a homotetramer, but not a dimer as previously reported (Guo et al., Cell 175: 583–597, 2018). We have determined the crystal structure of GapR in complex with a 10-bp A-tract DNA, which has an open tetrameric conformation, different from the closed clamp conformation in the previously reported crystal structure of GapR/DNA complex. The free GapR adopts multiple conformations in dynamic exchange equilibrium, with the major conformation resembling the closed tetrameric conformation, while the open tetrameric conformation is a representative of minor conformers. As it is impossible for the circular genomic DNA to get into the central DNA binding tunnel of the major conformation, we propose that GapR initially binds DNA through the open conformation, and then undergoes structural rearrangement to form the closed conformation which fully encircles the DNA. GapR prefers to bind DNA with 10-bp consecutive A/T base pairs nonselectively (Kd ∼12 nM), while it can also bind GC-rich DNA sequence with a reasonable affinity of about 120 nM. Besides, our results suggest that GapR binding results in widening the minor groove of AT-rich DNA, instead of overtwisting DNA.


Clay Minerals ◽  
2020 ◽  
Vol 55 (2) ◽  
pp. 132-141
Author(s):  
Ali Boukhemkhem ◽  
Alejandro H. Pizarro ◽  
Carmen B. Molina

ABSTRACTIn this investigation, Maghnia (Ma) and Mostaganem (Ms) bentonite clays, mined from west Algeria, with no prior affinity for anionic dyes, were modified by simple ion exchange with aqueous Fe3+ solutions, followed by calcination at 500°C. The resulting materials, Fe-Ma and Fe-Ms, respectively, were employed as adsorbents for methyl orange. The starting materials and the two adsorbents were characterized by X-ray diffraction, N2 adsorption–desorption isotherms, Brunauer–Emmett–Teller specific surface area and X-ray fluorescence and by determining the point of zero charge. The effects of various variables, such as initial dye concentration, contact time, adsorbent dose, initial pH and adsorption temperature, were studied. The kinetics were well described by the pseudo-second-order model and the mechanism was determined from the intraparticle diffusion model, while corresponding isotherms fitted better to the Freundlich model. Thermodynamic parameters showed that the adsorption process was endothermic, spontaneous and physical in nature, accompanied by an increase of entropy.


Sign in / Sign up

Export Citation Format

Share Document