scholarly journals Direct measurement of protein–protein interactions by FLIM-FRET at UV laser-induced DNA damage sites in living cells

2020 ◽  
Vol 48 (21) ◽  
pp. e122-e122
Author(s):  
Tanja Kaufmann ◽  
Sébastien Herbert ◽  
Benjamin Hackl ◽  
Johanna Maria Besold ◽  
Christopher Schramek ◽  
...  

Abstract Protein–protein interactions are essential to ensure timely and precise recruitment of chromatin remodellers and repair factors to DNA damage sites. Conventional analyses of protein–protein interactions at a population level may mask the complexity of interaction dynamics, highlighting the need for a method that enables quantification of DNA damage-dependent interactions at a single-cell level. To this end, we integrated a pulsed UV laser on a confocal fluorescence lifetime imaging (FLIM) microscope to induce localized DNA damage. To quantify protein–protein interactions in live cells, we measured Förster resonance energy transfer (FRET) between mEGFP- and mCherry-tagged proteins, based on the fluorescence lifetime reduction of the mEGFP donor protein. The UV-FLIM-FRET system offers a unique combination of real-time and single-cell quantification of DNA damage-dependent interactions, and can distinguish between direct protein–protein interactions, as opposed to those mediated by chromatin proximity. Using the UV-FLIM-FRET system, we show the dynamic changes in the interaction between poly(ADP-ribose) polymerase 1, amplified in liver cancer 1, X-ray repair cross-complementing protein 1 and tripartite motif containing 33 after DNA damage. This new set-up complements the toolset for studying DNA damage response by providing single-cell quantitative and dynamic information about protein–protein interactions at DNA damage sites.

2019 ◽  
Author(s):  
Simone Pelicci ◽  
Alberto Diaspro ◽  
Luca Lanzanò

AbstractChromatin nanoscale architecture in live cells can be studied by Forster Resonance Energy Transfer (FRET) between fluorescently labeled chromatin components, such as histones. A higher degree of nanoscale compaction is detected as a higher FRET level, since this corresponds to a higher degree of proximity between donor and acceptor molecules. However, in such a system the stoichiometry of the donors and acceptors engaged in the FRET process is not well defined and, in principle, FRET variations could be caused by variations in the acceptor-donor ratio rather than distance. Here we show that a FRET value independent of the acceptor-donor ratio can be obtained by Fluorescence Lifetime Imaging (FLIM) detection of FRET combined with a normalization of the FRET level to a pixel-wise estimation of the acceptor-donor ratio. We use this method to study FRET between two DNA binding dyes staining the nuclei of live cells. We show that acceptor-donor ratio corrected FRET imaging reveals variations of nanoscale compaction in different chromatin environments. As an application, we monitor the rearrangement of chromatin in response to laser-induced micro-irradiation and reveal that DNA is rapidly decompacted, at the nanoscale, in response to DNA damage induction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Robert Eckenstaler ◽  
Ralf A. Benndorf

Protein–protein interaction studies often provide new insights, i.e., into the formation of protein complexes relevant for structural oligomerization, regulation of enzymatic activity or information transfer within signal transduction pathways. Mostly, biochemical approaches have been used to study such interactions, but their results are limited to observations from lysed cells. A powerful tool for the non-invasive investigation of protein–protein interactions in the context of living cells is the microscopic analysis of Förster Resonance Energy Transfer (FRET) among fluorescent proteins. Normally, FRET is used to monitor the interaction state of two proteins, but in addition, FRET studies have been used to investigate three or more interacting proteins at the same time. Here we describe a fluorescence microscopy-based method which applies a novel 2-step acceptor photobleaching protocol to discriminate between non-interacting, dimeric interacting and trimeric interacting states within a three-fluorophore setup. For this purpose, intensity- and fluorescence lifetime-related FRET effects were analyzed on representative fluorescent dimeric and trimeric FRET-constructs expressed in the cytosol of HEK293 cells. In particular, by combining FLIM- and intensity-based FRET data acquisition and interpretation, our method allows to distinguish trimeric from different types of dimeric (single-, double- or triple-dimeric) protein–protein interactions of three potential interaction partners in the physiological setting of living cells.


2017 ◽  
Author(s):  
Alice Sherrard ◽  
Paul Bishop ◽  
Melanie Panagi ◽  
Maria Beatriz Villagomez ◽  
Dominic Alibhai ◽  
...  

AbstractChanges in chromatin compaction are crucial during genomic responses. Thus, methods that enable such measurements are instrumental for investigating genome function. Here, we address this challenge by developing, validating, and streamlining histone-based fluorescence lifetime imaging microscopy (FLIM) that robustly detects chromatin compaction states in fixed and live cells; in 2D and 3D. We present quality-controlled and detailed method that is simpler and faster than previous approches, and uses FLIMfit open-source software. We demonstrate the versatility of our method through its combination with immunofluorescence and its implementation in immortalised cells and primary neurons. Owing to these developments, we applied this method to elucidate the function of the DNA damage response kinase, ATM, in regulating chromatin organisation after genotoxic-stress. We unravelled a role for ATM in regulating chromatin compaction independently of DNA damage. Collectively, we present an adaptable chromatin FLIM method for examining chromatin structure in cells, and establish its broader utility.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Anca Margineanu ◽  
Jia Jia Chan ◽  
Douglas J. Kelly ◽  
Sean C. Warren ◽  
Delphine Flatters ◽  
...  

Abstract We present a high content multiwell plate cell-based assay approach to quantify protein interactions directly in cells using Förster resonance energy transfer (FRET) read out by automated fluorescence lifetime imaging (FLIM). Automated FLIM is implemented using wide-field time-gated detection, typically requiring only 10 s per field of view (FOV). Averaging over biological, thermal and shot noise with 100’s to 1000’s of FOV enables unbiased quantitative analysis with high statistical power. Plotting average donor lifetime vs. acceptor/donor intensity ratio clearly identifies protein interactions and fitting to double exponential donor decay models provides estimates of interacting population fractions that, with calibrated donor and acceptor fluorescence intensities, can yield dissociation constants. We demonstrate the application to identify binding partners of MST1 kinase and estimate interaction strength among the members of the RASSF protein family, which have important roles in apoptosis via the Hippo signalling pathway. K D values broadly agree with published biochemical measurements.


2012 ◽  
Vol 05 (03) ◽  
pp. 1250015 ◽  
Author(s):  
XIAO-PING WANG ◽  
HUAI-NA YU ◽  
TONG-SHENG CHEN

Fluorescence resonance energy transfer (FRET) technology had been widely used to study protein–protein interactions in living cells. In this study, we developed a ROI-PbFRET method to real-time quantitate the FRET efficiency of FRET construct in living cells by combining the region of interest (ROI) function of confocal microscope and partial acceptor photobleaching. We validated the ROI-PbFRET method using GFPs-based FRET constructs including 18AA and SCAT3, and used it to quantitatively monitor the dynamics of caspase-3 activation in single live cells stably expressing SCAT3 during staurosporine (STS)-induced apoptosis. Our results for the first demonstrate that ROI-PbFRET method is a powerful potential tool for detecting the dynamics of molecular interactions in live cells.


Sign in / Sign up

Export Citation Format

Share Document