scholarly journals Sliding of a 43S ribosomal complex from the recognized AUG codon triggered by a delay in eIF2-bound GTP hydrolysis

2015 ◽  
Vol 44 (4) ◽  
pp. 1882-1893 ◽  
Author(s):  
Ilya M. Terenin ◽  
Kseniya A. Akulich ◽  
Dmitry E. Andreev ◽  
Sofya A. Polyanskaya ◽  
Ivan N. Shatsky ◽  
...  
Author(s):  
R.A Walker ◽  
S. Inoue ◽  
E.D. Salmon

Microtubules polymerized in vitro from tubulin purified free of microtubule-associated proteins exhibit dynamic instability (1,2,3). Free microtubule ends exist in persistent phases of elongation or rapid shortening with infrequent, but, abrupt transitions between these phases. The abrupt transition from elongation to rapid shortening is termed catastrophe and the abrupt transition from rapid shortening to elongation is termed rescue. A microtubule is an asymmetrical structure. The plus end grows faster than the minus end. The frequency of catastrophe of the plus end is somewhat greater than the minus end, while the frequency of rescue of the plus end in much lower than for the minus end (4).The mechanism of catastrophe is controversial, but for both the plus and minus microtubule ends, catastrophe is thought to be dependent on GTP hydrolysis. Microtubule elongation occurs by the association of tubulin-GTP subunits to the growing end. Sometime after incorporation into an elongating microtubule end, the GTP is hydrolyzed to GDP, yielding a core of tubulin-GDP capped by tubulin-GTP (“GTP-cap”).


Cell ◽  
2014 ◽  
Vol 157 (5) ◽  
pp. 1117-1129 ◽  
Author(s):  
Gregory M. Alushin ◽  
Gabriel C. Lander ◽  
Elizabeth H. Kellogg ◽  
Rui Zhang ◽  
David Baker ◽  
...  

2018 ◽  
Author(s):  
Yoonjae Shin ◽  
Yong Kim ◽  
Hyemin Kim ◽  
Nakyoung Shin ◽  
Tae Kim ◽  
...  

2002 ◽  
Vol 156 (2) ◽  
pp. 315-326 ◽  
Author(s):  
Amy S. Gladfelter ◽  
Indrani Bose ◽  
Trevin R. Zyla ◽  
Elaine S.G. Bardes ◽  
Daniel J. Lew

At the beginning of the budding yeast cell cycle, the GTPase Cdc42p promotes the assembly of a ring of septins at the site of future bud emergence. Here, we present an analysis of cdc42 mutants that display specific defects in septin organization, which identifies an important role for GTP hydrolysis by Cdc42p in the assembly of the septin ring. The mutants show defects in basal or stimulated GTP hydrolysis, and the septin misorganization is suppressed by overexpression of a Cdc42p GTPase-activating protein (GAP). Other mutants known to affect GTP hydrolysis by Cdc42p also caused septin misorganization, as did deletion of Cdc42p GAPs. In performing its roles in actin polarization and transcriptional activation, GTP-Cdc42p is thought to function by activating and/or recruiting effectors to the site of polarization. Excess accumulation of GTP-Cdc42p due to a defect in GTP hydrolysis by the septin-specific alleles might cause unphysiological activation of effectors, interfering with septin assembly. However, the recessive and dose-sensitive genetic behavior of the septin-specific cdc42 mutants is inconsistent with the septin defect stemming from a dominant interference of this type. Instead, we suggest that assembly of the septin ring involves repeated cycles of GTP loading and GTP hydrolysis by Cdc42p. These results suggest that a single GTPase, Cdc42p, can act either as a ras-like GTP-dependent “switch” to turn on effectors or as an EF-Tu–like “assembly factor” using the GTPase cycle to assemble a macromolecular structure.


Sign in / Sign up

Export Citation Format

Share Document