dependent signal
Recently Published Documents


TOTAL DOCUMENTS

632
(FIVE YEARS 106)

H-INDEX

73
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Huijie Sun ◽  
Xinghua Cai ◽  
Bing Yan ◽  
Huashan Bai ◽  
Duotao Meng ◽  
...  

Investigating microbial lipid regulation contributes to understanding the lipid-dependent signal transduction process of cells and helps to improve the sensitivity of microorganisms to environmental factors by interfering with lipid metabolism, thus beneficial for constructing advanced cell factories of novel molecular drugs. Integrated omics technology was used to systematically reveal the lipid metabolism mechanism of a marine Meyerozyma guilliermondii GXDK6 under high NaCl stress and test the sensitivity of GXDK6 to antibiotics when its lipid metabolism transformed. The omics data showed that when GXDK6 perceived 10% NaCl stress, the expression of AYR1 and NADPH-dependent 1-acyldihydroxyacetone phosphate reductase was inhibited, which weaken the budding and proliferation of cell membranes. This finding was further validated by decreased 64.39% of OD600 under 10% NaCl stress when compared with salt-free stress. In addition, salt stress promoted a large intracellular accumulation of glycerol, which was also verified by exogenous addition of glycerol. Moreover, NaCl stress remarkably inhibited the expression of drug target proteins (such as lanosterol 14-alpha demethylase), thereby increasing sensitivity to fluconazole. This study provided new insights into the molecular mechanism involved in the regulation of lipid metabolism in Meyerozyma guilliermondii strain and contributed to developing new methods to improve the effectiveness of killing fungi with lower antibiotics.


2022 ◽  
Author(s):  
Cary R. Boyd-Shiwarski ◽  
Daniel J. Shiwarski ◽  
Shawn E. Griffiths ◽  
Rebecca T. Beacham ◽  
Logan Norrell ◽  
...  

When challenged by hypertonicity, dehydrated cells must defend their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless droplets, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to rescue volume. The formation of WNK1 condensates is driven by its intrinsically disordered C-terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows WNK1 to bypass a strengthened ionic milieu that favors kinase inactivity and reclaim cell volume through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.


Author(s):  
Diego Alberici ◽  
Francesco Camilli ◽  
Pierluigi Contucci ◽  
Emanuele Mingione

Abstract In this letter we present a finite temperature approach to a high-dimensional inference problem, the Wigner spiked model, with group dependent signal-to-noise ratios. For two classes of convex and non-convex network architectures the error in the reconstruction is described in terms of the solution of a mean-field spin-glass on the Nishimori line. In the cases studied the order parameters do not fluctuate and are the solution of finite dimensional variational problems. The deep architecture is optimized in order to confine the high temperature phase where reconstruction fails.


2021 ◽  
Author(s):  
Joy Collombat ◽  
Thibaut Pralon ◽  
Jenny Pego Magalhaes ◽  
Sarah Rottet ◽  
Brigitte Ksas ◽  
...  

Abstract Multiple chloroplast-to-nucleus signaling pathways contribute to the regulation of chloroplast biogenesis during plant greening. Here, we provide evidence for the direct implication of the atypical kinase ABC1K1. ABC1K1 is required for sufficient plastoquinone (PQ) allocation to the photosynthetic electron transport chain. Unexpectedly, mutation of abc1k1 suppresses greening and results in pale cotyledons under red light. This phenotype was not observed in other photosynthetic mutants and points to a specific signaling defect. Under red light, abc1k1 accumulated EXECUTER1 (EX1), a trigger of singlet oxygen (1O2) signaling. Consistent with the role of the FTSH metalloprotease in chloroplast biogenesis and EX1 degradation, the ftsh2 mutant var2, mimicked the greening defect of abc1k1 and accumulated EX1 under red light. We propose that this novel ABC1K1-dependent signal is required for chloroplast biogenesis to progress in challenging light conditions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Franziska Hartung ◽  
Yuchao Wang ◽  
Marloes Mak ◽  
Roel Willems ◽  
Anjan Chatterjee

AbstractHumans are deeply affected by stories, yet it is unclear how. In this study, we explored two aspects of aesthetic experiences during narrative engagement - literariness and narrative fluctuations in appraised emotional intensity. Independent ratings of literariness and emotional intensity of two literary stories were used to predict blood-oxygen-level-dependent signal changes in 52 listeners from an existing fMRI dataset. Literariness was associated with increased activation in brain areas linked to semantic integration (left angular gyrus, supramarginal gyrus, and precuneus), and decreased activation in bilateral middle temporal cortices, associated with semantic representations and word memory. Emotional intensity correlated with decreased activation in a bilateral frontoparietal network that is often associated with controlled attention. Our results confirm a neural dissociation in processing literary form and emotional content in stories and generate new questions about the function of and interaction between attention, social cognition, and semantic systems during literary engagement and aesthetic experiences.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yasushi Kawano ◽  
Hatsumi Sato ◽  
Kaori Goto ◽  
Masakazu Nishida ◽  
Kaei Nasu

Abstract Background To investigate the role of adenosine monophosphate (AMP)-activated protein kinase (AMPK) on the production of interleukin (IL)-8, monocyte chemoattractant protein (MCP)-1, prostaglandin E2 and F2α induced by IL-1β in endometrial stromal cells (ESCs) following treatment with 5-aminoimidazole-4- carboxamide ribonucleoside (AICAR). Methods Endometrial specimens were obtained and cultured. We examined the effects of IL-1β, IL-1 ra and AICAR on the production of IL-8, MCP-1, PGE2 and PGF2α in human ESCs. The phosphorylations of AMPK, IκB, 4EBP-1, p70S6K and S6 ribosomal protein were analyzed by Western immunoblotting. Results Following stimulation by IL-1β, the production of IL-8, MCP-1, PGE2 and PGF2α showed significant increases, and these increases were suppressed by AICAR. The expression of cyclooxygenase-2 (COX-2) induced by IL-1β and suppressed by AICAR. The phosphorylation of IκB, 4EBP-1, p70S6K and S6 ribosomal protein were inhibited via an AMPK-dependent signal transduction. Conclusions The production of IL-8, MCP-1, PGE2 and PGF2α induced by IL-1β in ESCs were involved in the negative regulatory mechanisms of AMPK. The substances that activate AMPK may be promising agents for the treatment of pathological problems such as dysmenorrhea.


2021 ◽  
Author(s):  
Cory J Evans ◽  
Ting Liu ◽  
Juliet R Girard ◽  
Utpal Banerjee

Inflammatory response in Drosophila to sterile (axenic) injury in embryos and adults has received some attention in recent years, and most concentrate on the events at the injury site. Here we focus on the effect sterile injury has on the hematopoietic organ, the lymph gland, and the circulating blood cells in the larva, the developmental stage at which major events of hematopoiesis are evident. In mammals, injury activates Toll-like receptor (TLR)/NFκB signaling in macrophages, which then express and secrete secondary, pro-inflammatory cytokines. In Drosophila larvae, distal puncture injury of the body wall epidermis causes a rapid activation of Toll and Jun kinase (JNK) signaling throughout the hematopoietic system and the differentiation of a unique blood cell type, the lamellocyte. Furthermore, we find that Toll and JNK signaling are coupled in their activation. Secondary to this Toll/JNK response, a cytokine, Upd3, is induced as a Toll pathway transcriptional target, which then promotes JAK/STAT signaling within the blood cells. Toll and JAK/STAT signaling are required for the emergence of the injury-induced lamellocytes. This is akin to the derivation of specialized macrophages in mammalian systems. Upstream, at the injury site, a Duox- and peroxide-dependent signal causes the activation of the proteases Grass and SPE needed for the activation of the Toll-ligand Spz, but microbial sensors or the proteases most closely associated with them during septic injury are not involved in the axenic inflammatory response.


2021 ◽  
Author(s):  
Shuang Li ◽  
Yuanyuan Li ◽  
Blake R. Rushing ◽  
Sarah E. Harris ◽  
Susan L. McRitchie ◽  
...  

The yeast Saccharomyces cerevisiae has long been used to produce alcohol from glucose and other sugars. While much is known about glucose metabolism, relatively little is known about the receptors and signaling pathways that indicate glucose availability. Here we compare the two glucose receptor systems in S. cerevisiae. The first is a heterodimer of transporter-like proteins (transceptors), while the second is a seven-transmembrane receptor coupled to a large G protein (Gpa2) and two small G proteins (Ras1 and Ras2). Through comprehensive measurements of glucose-dependent transcription and metabolism, we demonstrate that the two receptor systems have distinct roles in glucose signaling: the G protein-coupled receptor directs carbohydrate and energy metabolism, while the transceptors regulate ancillary processes such as ribosome, amino acids, cofactor and vitamin metabolism. The large G protein transmits the signal from its cognate receptor, while the small G protein Ras2 (but not Ras1) integrates responses from both receptor pathways. Collectively, our analysis reveals the molecular basis for glucose detection and the earliest events of glucose-dependent signal transduction in yeast.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lukas Busch ◽  
Stefan Vieten ◽  
Susan Brödel ◽  
Kristina Endres ◽  
Bernd Bufe

Abstract Inflammation is a central element of many neurodegenerative diseases. Formyl peptide receptors (FPRs) can trigger several receptor-dependent signal transduction pathways that play a key role in neuroinflammation and neurodegeneration. They are chemotactic receptors that help to regulate pro- and anti-inflammatory responses in most mammals. FPRs are primarily expressed in the immune and nervous systems where they interact with a complex pattern of pathogen-derived and host-endogenous molecules. Mounting evidence points towards a contribution of FPRs – via neuropathological ligands such as Amyloid beta, and neuroprotective ligands such as Humanin, Lipoxin A4, and Annexin A1 – to multiple pathological aspects of neurodegenerative diseases. In this review, we aim to summarize the interplay of FPRs with neuropathological and neuroprotective ligands. Next, we depict their capability to trigger a number of ligand-dependent cell signaling pathways and their potential to interact with additional intracellular cofactors. Moreover, we highlight first studies, demonstrating that a pharmacological inhibition of FPRs helps to ameliorate neuroinflammation, which may pave the way towards novel therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document