scholarly journals Function of TFIIIC, RNA polymerase III initiation factor, in activation and repression of tRNA gene transcription

2018 ◽  
Vol 46 (18) ◽  
pp. 9444-9455 ◽  
Author(s):  
Małgorzata Cieśla ◽  
Ewa Skowronek ◽  
Magdalena Boguta
1992 ◽  
Vol 47 (3-4) ◽  
pp. 320-322 ◽  
Author(s):  
Przemyslaw Szafranski ◽  
W. Jerzy Smagowicz

Abstract Apparent Michaelis constants for nucleotides in transcription of yeast tRN Agene by hom ologous RNA polymerase III with auxiliary protein factors, were found to be remarkably higher in initiation than in elongation of RNA chain. This supports presumptions regarding topological similarities between catalytic centers of bacterial and eukaryotic RNA polymerases.


2019 ◽  
Vol 2 (3) ◽  
pp. e201800261 ◽  
Author(s):  
Richoo B Davis ◽  
Neah Likhite ◽  
Christopher A Jackson ◽  
Tao Liu ◽  
Michael C Yu

Protein arginine methylation is an important means by which protein function can be regulated. In the budding yeast, this modification is catalyzed by the major protein arginine methyltransferase Hmt1. Here, we provide evidence that the Hmt1-mediated methylation of Rpc31, a subunit of RNA polymerase III, plays context-dependent roles in tRNA gene transcription: under conditions optimal for growth, it positively regulates tRNA gene transcription, and in the setting of stress, it promotes robust transcriptional repression. In the context of stress, methylation of Rpc31 allows for its optimal interaction with RNA polymerase III global repressor Maf1. Interestingly, mammalian Hmt1 homologue is able to methylate one of Rpc31’s human homologue, RPC32β, but not its paralogue, RPC32α. Our data led us to propose an efficient model whereby protein arginine methylation facilitates metabolic economy and coordinates protein-synthetic capacity.


FEBS Letters ◽  
1990 ◽  
Vol 269 (2) ◽  
pp. 358-362 ◽  
Author(s):  
Daniel Besser ◽  
Frank Götz ◽  
Kai Schulze-Forster ◽  
Herbert Wagner ◽  
Hans Kröger ◽  
...  

2004 ◽  
Vol 279 (31) ◽  
pp. 32401-32406 ◽  
Author(s):  
Diane E. Alexander ◽  
David J. Kaczorowski ◽  
Amy J. Jackson-Fisher ◽  
Drew M. Lowery ◽  
Sara J. Zanton ◽  
...  

2016 ◽  
Vol 291 (48) ◽  
pp. 25239-25246 ◽  
Author(s):  
Juan Wang ◽  
Shasha Zhao ◽  
Yun Wei ◽  
Ying Zhou ◽  
Paul Shore ◽  
...  

1996 ◽  
Vol 16 (9) ◽  
pp. 4639-4647 ◽  
Author(s):  
S J McBryant ◽  
E Meier ◽  
A Leresche ◽  
S J Sharp ◽  
V J Wolf ◽  
...  

The RNA polymerase III transcription initiation factor TFIIIB contains the TATA-box-binding protein (TBP) and polymerase III-specific TBP-associated factors (TAFs). Previous studies have shown that DNA oligonucleotides containing the consensus TATA-box sequence inhibit polymerase III transcription, implying that the DNA binding domain of TBP is exposed in TFIIIB. We have investigated the TATA-box DNA binding activity of Xenopus TFIIIB, using transcription inhibition assays and a gel mobility shift assay. Gel shift competition assays with mutant and nonspecific DNAs demonstrate the specificity of the TFIIIB-TATA box DNA complex. The apparent dissociation constant for this protein-DNA interaction is approximately 0.4 nM, similar to the affinity of yeast TBP for the same sequence. TFIIIB transcriptional activity and TATA-box binding activity cofractionate during a series of four ion-exchange chromatographic steps, and reconstituted transcription reactions demonstrate that the TATA-box DNA-protein complex contains TFIIIB TAF activity. Polypeptides with apparent molecular masses of 75 and 92 kDa are associated with TBP in this complex. These polypeptides were renatured after elution from sodium dodecyl sulfate-gels and tested individually and in combination for TFIIIB TAF activity. Recombinant TBP along with protein fractions containing the 75- and 92-kDa polypeptides were sufficient to reconstitute TFIIIB transcriptional activity and DNA binding activity, suggesting that Xenopus TFIIIB is composed of TBP along with these polypeptides.


Sign in / Sign up

Export Citation Format

Share Document