scholarly journals Demonstration of preferential binding of SYBR Green I to specific DNA fragments in real-time multiplex PCR

2003 ◽  
Vol 31 (22) ◽  
pp. 136e-136 ◽  
Author(s):  
S. Giglio
2004 ◽  
Vol 50 (11) ◽  
pp. 911-922 ◽  
Author(s):  
Gitika Panicker ◽  
Michael C.L Vickery ◽  
Asim K Bej

In this study, we developed a PCR-based rapid detection method for clinically important pathogenic strains of Vibrio vulnificus. Positive amplification of the 504-bp viuB fragment was seen in all 22 clinical isolates tested but only in 8 out of 33 environmental isolates. The combination of the species-specific 205-bp vvh fragment along with viuB in a multiplexed PCR enabled us to confirm the presence of potentially pathogenic strains of V. vulnificus. No amplification of other Vibrio spp. or non-Vibrio bacteria was evidenced, suggesting a high specificity of detection by this method. The sensitivity of detection for both targeted genes was 10 pg of purified DNA, which correlated with 103V. vulnificus CFU in 1 mL of pure culture or 1 g un-enriched seeded oyster tissue homogenate. This sensitivity was improved to 1 CFU per gram of oyster tissue homogenate in overnight-enriched samples. A SYBR Green I based real-time PCR method was also developed that was shown to produce results consistent with the conventional PCR method. Application of the multiplexed real-time PCR to natural oyster tissue homogenates exhibited positive detection of vvh in 51% of the samples collected primarily during the summer months; however, only 15% of vvh positive samples exhibited viuB amplicons. The rapid, sensitive, and specific detection of clinically important pathogenic V. vulnificus in shellfish would be beneficial in reducing illnesses and deaths caused by this pathogen.Key words: Vibrio, multiplex PCR, shellfish, SYBR Green I, real-time PCR.


2021 ◽  
Author(s):  
Yang Pan ◽  
Jing Chen ◽  
Junhuang Wu ◽  
Yongxia Wang ◽  
Junwei Zou ◽  
...  

Abstract Background: Canine Kobuvirus (CaKoV) and Canine Circovirus (CaCV) are viruses that infect dogs causing diarrheal symptoms that are very similar. However, there is no clinical method to detect a co-infection of these two viruses.Results: In this study, a duplex SYBR Green I-based quantitative real-time polymerase chain reaction (PCR) assay for the rapid and simultaneous detection of CaKoV and CaCV was established. CaKoV and CaCV were distinguished by their different melting temperature which was 86℃ for CaKoV and 78℃ for CaCV. The assay was highly specific, with no cross-reactivity with other common canine viruses and demonstrated high sensitivity. The detection limits of CaKoV and CaCV were 8.924 × 101 copies/μL and 3.841 × 101 copies/μL, respectively. The highest intra- and inter-assay Ct value variation coefficients (CV) of CaKoV were 0.40% and 0.96%, respectively. For CaCV, the highest intra- and inter-assay Ct value variation coefficients were 0.26% and 0.70%, respectively. In 57 clinical samples, positive detection rates of CaKoV and CaCV were 8.77% (7/57) and 15.79% (9/57), respectively. The co-infection rate was 7.02% (4/57). Conclusions: The duplex SYBR Green I-based real-time PCR assay established in this study is a fast, efficient, and sensitive method for the simultaneous detection of the two viruses and provides a powerful tool for the rapid detection of CaKoV and CaCV in clinical practice.


2007 ◽  
Vol 21 (5-6) ◽  
pp. 368-378 ◽  
Author(s):  
Anna Casabianca ◽  
Caterina Gori ◽  
Chiara Orlandi ◽  
Federica Forbici ◽  
Carlo Federico Perno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document