scholarly journals SNP genotyping by allele-specific PCR using ENA® primers

2005 ◽  
Vol 49 (1) ◽  
pp. 47-48 ◽  
Author(s):  
Makoto Koizumi ◽  
Koji Morita ◽  
Miho Takagi ◽  
Hiroaki Yasumo ◽  
Atsushi Kasuya
ChemBioChem ◽  
2011 ◽  
Vol 12 (9) ◽  
pp. 1387-1390 ◽  
Author(s):  
Ye Lim Jung ◽  
Cheulhee Jung ◽  
Harshala Parab ◽  
Dae-Yeon Cho ◽  
Hyun Gyu Park

2022 ◽  
Vol 12 ◽  
Author(s):  
Ruslan Kalendar ◽  
Akmaral Baidyussen ◽  
Dauren Serikbay ◽  
Lyudmila Zotova ◽  
Gulmira Khassanova ◽  
...  

The proposed method is a modified and improved version of the existing “Allele-specific q-PCR” (ASQ) method for genotyping of single nucleotide polymorphism (SNP) based on fluorescence resonance energy transfer (FRET). This method is similar to frequently used techniques like Amplifluor and Kompetitive allele specific PCR (KASP), as well as others employing common universal probes (UPs) for SNP analyses. In the proposed ASQ method, the fluorophores and quencher are located in separate complementary oligonucleotides. The ASQ method is based on the simultaneous presence in PCR of the following two components: an allele-specific mixture (allele-specific and common primers) and a template-independent detector mixture that contains two or more (up to four) universal probes (UP-1 to 4) and a single universal quencher oligonucleotide (Uni-Q). The SNP site is positioned preferably at a penultimate base in each allele-specific primer, which increases the reaction specificity and allele discrimination. The proposed ASQ method is advanced in providing a very clear and effective measurement of the fluorescence emitted, with very low signal background-noise, and simple procedures convenient for customized modifications and adjustments. Importantly, this ASQ method is estimated as two- to ten-fold cheaper than Amplifluor and KASP, and much cheaper than all those methods that rely on dual-labeled probes without universal components, like TaqMan and Molecular Beacons. Results for SNP genotyping in the barley genes HvSAP16 and HvSAP8, in which stress-associated proteins are controlled, are presented as proven and validated examples. This method is suitable for bi-allelic uniplex reactions but it can potentially be used for 3- or 4-allelic variants or different SNPs in a multiplex format in a range of applications including medical, forensic, or others involving SNP genotyping.


2017 ◽  
Vol 2 (1) ◽  
pp. 90-94 ◽  
Author(s):  
Jiazheng Yuan ◽  
Zixiang Wen ◽  
Cuihua Gu ◽  
Dechun Wang

We presented here the application of two in-plate SNP (single nucleotide polymorphism) genotyping platforms for soybean plants [Glycine max (L.) Merr.], KASP® (Kompetitive Allele Specific PCR genotyping, LGC Genomics) and TaqMan® (Life Technologies) respectively. These two systems offer us an ability to determine the genotypes of 384 individual samples accurately and efficiently by allele specific PCR in a single plate using typical PCR conditions. Both of the systems require small quantity of genomic DNA obtained from a simple DNA extraction. The genomic sequences containing target SNPs can easily be used as a basic blueprint to design the probes and primers of KASP® and TaqMan® assays whether the sequences are obtained from the genome sequence of soybean William 82 (Wm82.a2.v1), Illumina Soy50k SNPs, or parallel resequencing. Moreover, we listed the pros and cons of the two systems and explained the principles behind the platforms. The high call rate and clear clustering separation of the SNPs can be readily obtained from these platforms without conducting any assay optimization processes. These platforms can routinely be performed on 96/384-well plate format with or without an automation procedure. Therefore, these platforms are especially suitable for the SNP genotyping on a particular trait with a large sample size, gene fine mapping, and marker assisted selection. Further, they require little hands-on experience and achieve per-site and per-individual costs below that of current SSR, AFLP, RFLP, and SNP chip technologies. The platforms can be used for genotyping on a wide range of organisms due to their simplicity and flexibility of handling. Meanwhile, we also especially presented some of the advantages using KASP® SNP genotyping pipeline, which was cost effective in the selection of allele specific assay and therefore, efficiently facilitated the soybean genotyping across large numbers (thousands or more) of individual lines for a great range of markers (hundreds to thousands) in our laboratory.


2007 ◽  
Vol 25 (1-2) ◽  
pp. 1-9 ◽  
Author(s):  
Muriel Gaudet ◽  
Anna-Giulia Fara ◽  
Maurizio Sabatti ◽  
Elena Kuzminsky ◽  
Giuseppe Scarascia Mugnozza

Author(s):  
Muriel Gaudet ◽  
Anna-Giulia Fara ◽  
Isacco Beritognolo ◽  
Maurizio Sabatti

2003 ◽  
Vol 22 (1) ◽  
pp. 79-85 ◽  
Author(s):  
David Latorra ◽  
Krista Campbell ◽  
Andreas Wolter ◽  
J. Michael Hurley

Sign in / Sign up

Export Citation Format

Share Document