Deep dysphasia in a case of phonemic deafness: role of the right hemisphere in auditory language comprehension

Neurocase ◽  
1995 ◽  
Vol 1 (1) ◽  
pp. 67-69
Author(s):  
J.-R Duhamel
1982 ◽  
Vol 3 (3) ◽  
pp. 263-278 ◽  
Author(s):  
Rita Sloan Berndt ◽  
Alfonso Caramazza

ABSTRACTComprehension of six dimensional adjectives was found to be intact in groups of left hemisphere-damaged, right hemisphere-damaged and neurologically normal patients. Phrases with those adjectives were interpreted quite differently by left hemisphere-damaged patients than by the other two groups, and a subgroup of left-damaged patients appeared to be responsible for that group's deviant responses to phrases such as slightly bigger. All patients in the left-damaged group had some difficulty with negative phrases such as not big, however. Patients with right hemisphere-damage had difficulty interpreting only negative phrases with small. Results are interpreted with reference to Luria's discussion of semantic aphasia, and with regard to recent findings concerning the role of the right hemisphere in language comprehension.


2021 ◽  
Vol 11 (8) ◽  
pp. 960
Author(s):  
Mina Kheirkhah ◽  
Philipp Baumbach ◽  
Lutz Leistritz ◽  
Otto W. Witte ◽  
Martin Walter ◽  
...  

Studies investigating human brain response to emotional stimuli—particularly high-arousing versus neutral stimuli—have obtained inconsistent results. The present study was the first to combine magnetoencephalography (MEG) with the bootstrapping method to examine the whole brain and identify the cortical regions involved in this differential response. Seventeen healthy participants (11 females, aged 19 to 33 years; mean age, 26.9 years) were presented with high-arousing emotional (pleasant and unpleasant) and neutral pictures, and their brain responses were measured using MEG. When random resampling bootstrapping was performed for each participant, the greatest differences between high-arousing emotional and neutral stimuli during M300 (270–320 ms) were found to occur in the right temporo-parietal region. This finding was observed in response to both pleasant and unpleasant stimuli. The results, which may be more robust than previous studies because of bootstrapping and examination of the whole brain, reinforce the essential role of the right hemisphere in emotion processing.


1986 ◽  
Vol 24 (2) ◽  
pp. 289-292 ◽  
Author(s):  
Valentina D'Urso ◽  
Gianfranco Denes ◽  
Stefano Testa ◽  
Carlo Semenza
Keyword(s):  

2012 ◽  
Vol 17 (5) ◽  
pp. 602-614 ◽  
Author(s):  
Rinat Gold ◽  
Miriam Faust ◽  
Elisheva Ben-Artzi

2013 ◽  
Vol 7 (2) ◽  
pp. 155-163
Author(s):  
Juliana de Lima Müller ◽  
Jerusa Fumagalli de Salles

ABSTRACT The role of the right cerebral hemisphere (RH) associated with semantic priming effects (SPEs) must be better understood, since the consequences of RH damage on SPE are not yet well established. Objective: The aim of this article was to investigate studies analyzing SPEs in patients affected by stroke in the RH through a systematic review, verifying whether there are deficits in SPEs, and whether performance varies depending on the type of semantic processing evaluated or stimulus in the task. Methods: A search was conducted on the LILACS, PUBMED and PSYCINFO databases. Results: Out of the initial 27 studies identified, 11 remained in the review. Difficulties in SPEs were shown in five studies. Performance does not seem to vary depending on the type of processing, but on the type of stimulus used. Conclusion: This ability should be evaluated in individuals that have suffered a stroke in the RH in order to provide treatments that will contribute to their recovery.


Open Medicine ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Zlatislav Stoyanov ◽  
Lyoubka Decheva ◽  
Irina Pashalieva ◽  
Piareta Nikolova

AbstractThe principle of symmetry-asymmetry is widely presented in the structural and functional organization of the nonliving and living nature. One of the most complex manifestations of this principle is the left-right asymmetry of the human brain. The present review summarizes previous and contemporary literary data regarding the role of brain asymmetry in neuroimmunomodulation. Some handedness-related peculiarities are outlined additionally. Brain asymmetry is considered to be imprinted in the formation and regulation of the individual’s responses and relationships at an immunological level with the external and internal environment. The assumptions that the hemispheres modulate immune response in an asymmetric manner have been confirmed in experiments on animals. Some authors assume that the right hemisphere plays an indirect role in neuroimmunomodulation, controlling and suppressing the left hemispheric inductive signals.


Sign in / Sign up

Export Citation Format

Share Document