NIMG-10. OPTIMIZING IMAGE QUALITY FOR MAGNETIC RESONANCE SIMULATION IN SPINE STEREOTACTIC BODY RADIATION THERAPY

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi129-vi129
Author(s):  
Lubna Hammoudeh ◽  
Ho Young Lee ◽  
Evangelia Kaza ◽  
Jeffrey Guenette ◽  
Tracy Balboni

Abstract BACKGROUND Currently, the standard MRI sequence for SC imaging in SBRT has been axial 2D T2-weighted Turbo Spin Echo (TSE). Even though 3D T2-weighted sequences such as SPACE (Sampling Perfection with Application optimized Contrasts using different flip angle Evolution) image a whole volume simultaneously and thus offer better reconstruction, they have not been clinically implemented due to their long acquisition times. However, the application of Compressed Sensing (CS) methods on SPACE sequences, achieving clinically acceptable time. METHODS A 3D T2 CS SPACE was obtained and evaluated against the standard 2D TSE for spine SBRT based on a MagPhan RT quality assurance phantom and patients data, analysis was done using the phantom manufacturer software ImageOwl that calculates image distortions by comparing the known position of phantom features to their detected position in the image. RESULTS Results of phantom comparison between 3D T2 and 2D T2 indicate that although the 3D sequence had lower signal-to-noise ratio (SNR) than the 2D sequence, it presented less geometric distortions caused by gradient non-linearities, particularly in the anterior-posterior (A/P) and head-feet (H/F) directions. Distortions caused by chemical shift are in theory smaller for the 3D T2 CS SPACE, amounting to 0.85mm compared to 1.62mm with 2D T2. Between 2D versus 3D MRI defined SC data among 4 patients, average deviation of the centroid point cord contours was 0.08cm. The volume of the cord showed 1cc larger 3D volumes compared to 2D T2. Finally, the mean voxel count overlap coefficient and DICE coefficient was 0.92 and 0.87 respectively. CONCLUSIONS Since 3D MRI is under consideration to replace 2D MRI, it is important to compare SC contours from 3D to 2D MRI and assess their impact on treatment plans. Positive results would pave the path for larger subject cohort evaluation.

1986 ◽  
Vol 3 (1) ◽  
pp. 63-75 ◽  
Author(s):  
F. S. Prato ◽  
D. J. Drost ◽  
T. Keys ◽  
P. Laxon ◽  
B. Comissiong ◽  
...  

Author(s):  
Alexander H. J. Staal ◽  
Andor Veltien ◽  
Mangala Srinivas ◽  
Tom W. J. Scheenen

Abstract Purpose Isoflurane (ISO) is the most commonly used preclinical inhalation anesthetic. This is a problem in 19F MRI of fluorine contrast agents, as ISO signals cause artifacts that interfere with unambiguous image interpretation and quantification; the two most attractive properties of heteronuclear MRI. We aimed to avoid these artifacts using MRI strategies that can be applied by any pre-clinical researcher. Procedures Three strategies to avoid ISO chemical shift displacement artifacts (CSDA) in 19F MRI are described and demonstrated with measurements of 19F-containing agents in phantoms and in vivo (n = 3 for all strategies). The success of these strategies is compared to a standard Rapid Acquisition with Relaxation Enhancement (RARE) sequence, with phantom and in vivo validation. ISO artifacts can successfully be avoided by (1) shifting them outside the region of interest using a narrow signal acquisition bandwidth, (2) suppression of ISO by planning a frequency-selective suppression pulse before signal acquisition or by (3) preventing ISO excitation with a 3D sequence with a narrow excitation bandwidth. Results All three strategies result in complete ISO signal avoidance (p < 0.0001 for all methods). Using a narrow acquisition bandwidth can result in loss of signal to noise ratio and distortion of the image, and a frequency-selective suppression pulse can be incomplete when B1-inhomogeneities are present. Preventing ISO excitation with a narrow excitation pulse in a 3D sequence yields the most robust results (relative SNR 151 ± 28% compared to 2D multislice methods, p = 0.006). Conclusion We optimized three easily implementable methods to avoid ISO signal artifacts and validated their performance in phantoms and in vivo. We make recommendation on the parameters that pre-clinical studies should report in their method section to make the used approach insightful.


Sign in / Sign up

Export Citation Format

Share Document