Philosophy of Cosmology

Philosophy ◽  
2019 ◽  
Author(s):  
Craig Fox ◽  
Marie Gueguen ◽  
Adam Koberinski ◽  
Chris Smeenk

Physical cosmology, the study of the large-scale structure of the universe and its evolution, has become a central area of research in fundamental physics. Theoretical and observational developments have led to acceptance of a “standard model” describing the history of the universe in impressive detail. These developments raise a number of challenging foundational questions that have stimulated the emerging field of philosophy of cosmology. Many of these questions are closely tied to discussions in general philosophy of science and philosophy of physics, whereas others are distinctive to the field. This bibliography aims to provide an orientation for both kinds of questions. As philosophy of cosmology is an emerging field, the literature in this area is sparse. Hence this bibliography includes two kinds of references that do not explicitly address philosophy of cosmology. First, it identifies several philosophical papers regarding other scientific fields, with the thought that these will inform discussions of parallel issues in cosmology. Second, it includes several references to the scientific literature, to provide philosophers with a useful orientation to contemporary scientific debates.

Author(s):  
P. J. E. Peebles

This book is the essential introduction to this critical area of modern physics, written by a leading pioneer who has shaped the course of the field for decades. The book provides an authoritative overview of the field, showing how observation has combined with theory to establish the science of physical cosmology. The book presents the elements of physical cosmology, including the history of the discovery of the expanding universe; surveys the cosmological tests that measure the geometry of space-time, with a discussion of general relativity as the basis for these tests; and reviews the origin of galaxies and the large-scale structure of the universe. Now featuring the author's 2019 Nobel lecture, the book remains an indispensable reference for students and researchers alike.


Author(s):  
P. J. E. Peebles

This chapter discusses the development of physical sciences in seemingly chaotic ways, by paths that are at best dimly seen at the time. It refers to the history of ideas as an important part of any science, and particularly worth examining in cosmology, where the subject has evolved over several generations. It also examines the puzzle of inertia, which traces the connection to Albert Einstein's bold idea that the universe is homogeneous in the large-scale average called “cosmological principle.” The chapter cites Newtonian mechanics that defines a set of preferred motions in space, the inertial reference frames, by the condition that a freely moving body has a constant velocity. It talks about Ernst Mach, who argued that inertial frames are determined relative to the motion of the rest of the matter in the universe.


1988 ◽  
Vol 130 ◽  
pp. 63-65
Author(s):  
Gerhard Börner

The basic idea of inflation in cosmology is very simple: It is the assumption that the expansion factor R(t) of a Friedmann-Lemaltre cosmological model grows exponentially during a brief time interval in the very early universe. The phase of exponential growth is followed by a thermalizatlon stage and a subsequent “normal” evolution R(t)∼vt. This “Inflationary expansion“ can help to solve cosmological puzzles inherent in the standard model - such as the large-scale flatness, the horizon structure, the numerical value of the entropy in a comoving volume [for a review see Brandenberger 1985]. To turn this romantic idea of inflation into a quantitative model requires still a lot of work: The simple change in the thermal history of the universe must be derived from a fundamental particle theory. The models proposed so far do not inspire much confidence. In the following a few difficulties of the Higgs field idea, especially the Coleman-Weinberg formalism will be pointed out (section 1). In section 2 some problems connected with the investigation of initially strongly anisotropic or Inhomogeneous cosmological models will be mentioned.


2019 ◽  
Vol 489 (1) ◽  
pp. 1206-1229 ◽  
Author(s):  
Mélanie Habouzit ◽  
Marta Volonteri ◽  
Rachel S Somerville ◽  
Yohan Dubois ◽  
Sébastien Peirani ◽  
...  

ABSTRACT High-redshift quasars are believed to reside in highly biased regions of the Universe, where black hole growth is sustained by an enhanced number of mergers and by being at the intersection of filaments bringing fresh gas. This assumption should be supported by an enhancement of the number counts of galaxies in the field of view of quasars. While the current observations of quasar environments do not lead to a consensus on a possible excess of galaxies, the future missions JWST, WFIRST, and Euclid will provide new insights on quasar environments, and will substantially increase the number of study-cases. We are in a crucial period, where we need to both understand the current observations and predict how upcoming missions will improve our understanding of BH environments. Using the large-scale simulation Horizon-AGN, we find that statistically the most massive BHs reside in environments with the largest galaxy number counts. However, we find a large variance in galaxy number counts, and some massive BHs do not show enhanced counts in their neighbourhood. Interestingly, some massive BHs have a very close galaxy companion but no further enhancement at larger scales, in agreement with recent observations. We find that AGN feedback in the surrounding galaxies is able to decrease their luminosity and stellar mass, and therefore to make them unobservable when using restrictive galaxy selection criteria. Radiation from the quasars can spread over large distances, which could affect the formation history of surrounding galaxies, but a careful analysis of these processes requires radiative transfer simulations.


Author(s):  
P. J. E. Peebles

This chapter introduces physical cosmology as the attempt to make sense of the large-scale nature of the material world by the methods of the natural sciences. It explains that physical cosmology operates under the special restrictions of astronomy, which is considered successful in sister fields, such as stellar astronomy and particle physics. It cites the substantial progress of cosmology as an enterprise in physical science, although the advances certainly have moved around considerable gaps in one's understanding. The chapter details how cosmology inherits from basic physics the more ancient and honorable tradition of attempts to understand where the world came from, where it is going, and why. It reviews believable evidence that the universe is expanding, the space between the galaxies opening up, and that this expansion traces back to a hot dense phase, the big bang.


2012 ◽  
Vol 12 ◽  
pp. 100-109 ◽  
Author(s):  
JAAN EINASTO

An overview is given on properties of the Large Scale Structure (LSS) using recent sky surveys (SDSS Main sample). LSS evolves very slowly, thus it contains imprints of physical conditions in the early Universe, as well as processes during its evolution. Present physical experiments are still unable to reproduce conditions in the very early Universe, thus the study of the properties of the LSS yields valuable information for fundamental physics.


Author(s):  
Timothy Clifton

Cosmology began as a scientific discipline at the beginning of the 20th century, with the work of Albert Einstein and Edwin Hubble. Gravitational interaction is fundamental to cosmology, as gravity dominates over all other forces on large-scale distances. ‘Cosmology’ outlines the modern history of cosmology, discussing how studies have provided knowledge on the early Universe and its expansion. The Concordance Model proposes that only c.5 per cent of the energy in the Universe is in the form of normal matter; c.25 per cent is in the form of the gravitationally attractive dark matter; and the remaining c.70 per cent is in the form of the gravitationally repulsive dark energy. But there is still much to learn.


2012 ◽  
Vol 16 (1 and 2) ◽  
pp. 283-303
Author(s):  
Lucia Ayala

The idea of a plurality of worlds, consolidated in the seventeenth and eighteenth centuries, is one of the most inspiring and exciting chapters in the history of astronomy. Nevertheless, one crucial aspect has yet to be written. In this paper I propose to recompose the fascinating visual mosaic around the subject, in order to establish the basis for a largely forgotten iconography. It represents a key period in the evolution of the notions around the large-scale structure of the universe, one of the milestones in Early Modern cosmology. This tradition continued until the nineteenth century, when astronomers such as William Herschel still considered the existence of multiple similar inhabited systems. Today, when extrasolar planets and the cosmic web are in the forefront of the astrophysical vocabulary and its images are so popular, reflecting on the visual genealogy of this field acquires special relevance. This paper invites the reader to look at the sky through a telescope provided with art historical lenses.


Sign in / Sign up

Export Citation Format

Share Document