scholarly journals 69. Incidence of metabolic complications among treatment-naïve adults living with HIV-1 randomized to B/F/TAF, DTG/ABC/3TC or DTG+F/TAF after 144 Weeks

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S46-S46
Author(s):  
Eric Daar ◽  
Chloe Orkin ◽  
Paul Sax ◽  
Jeffrey L Stephens ◽  
Ellen Koenig ◽  
...  

Abstract Background Metabolic comorbidities including diabetes (DM) and dyslipidemia pose challenges to the long-term care of people with HIV (PWH). Incidence of cardiovascular disease and DM are reported at higher rates in PWH than the general population. Obesity is broadly prevalent in both the general population and PWH, and higher body mass index (BMI) can contribute to metabolic complications. Here we present longer-term follow up on incidence of DM, hypertension (HTN), BMI categorical shifts, and lipid changes over 144 weeks of blinded treatment from two trials of PWH initiating antiretroviral therapy. Methods We assessed incidence of metabolic complications in adult PWH in Study 1489: bictegravir/emtricitabine/tenofovir alafenamide (B/F/TAF) vs dolutegravir/abacavir/ lamivudine (DTG/ABC/3TC) and Study 1490: B/F/TAF vs DTG+F/TAF. Treatment-emergent (TE) metabolic comorbidities were defined by standard MedDRA search lists. CDC-defined BMI categories were compared from baseline (BL) to Week 144. Analyses by sex at birth and race were performed, as well as for lipid changes. Results Among 1,274 total participants, median (range) age was 33 years (18-77), 90% men, 33% black. In study 1489, BL prevalence of DM and HTN was 4.5 and 12.1% with TE DM and HTN in B/F/TAF being 0.7% and 10%, and for DTG/ABC/3TC 1.3% and 6.9%, respectively. In study 1490, BL prevalence of DM and HTN was 6.8 and 18.8% with TE DM and HTN in B/F/TAF being 2.1 and 5.8%, and for DTG+F/TAF 2.3 and 6.5%, respectively. BMI shift from Normal to Obese: B/F/TAF 0%, DTG/ABC/3TC 3.2%, p=0.12 (1489) (Table 1); B/F/TAF 2.5%, DTG+F/TAF 2.9% p=1.00 (1490) (Table 2). Subgroup analyses by gender/race showed similar findings for TE DM, HTN, and BMI changes. Median changes from BL fasted lipids were small (Table 1). Table 1§. Studies 1489 and 1490: Metabolic Outcomes from Baseline to Week 144 Table 2±. Shift Table of BMI Category at Week 144 by Baseline BMI Category – Overall Conclusion Through over 144 weeks of follow up, PWH randomized to initiate B/F/TAF, DTG/ABC/3TC or DTG+F/TAF had low rates of incident DM or HTN-related AEs, with no statistically significant differences by treatment group. BMI changes/categorical shifts from BL did not significantly differ by regimen, and no clinically significant change or difference by regimen in lipids were observed. While data are limited by three years of follow up, they are strengthened by randomized study design of three widely used initial ART regimens. Disclosures Eric Daar, MD, Bristol-Myers Squibb (Consultant)Gilead Sciences Inc. (Consultant, Scientific Research Study Investigator, Advisor or Review Panel member, Research Grant or Support)Janssen (Consultant, Advisor or Review Panel member, Research Grant or Support)Merck (Consultant, Advisor or Review Panel member, Research Grant or Support)Teva (Consultant, Advisor or Review Panel member)ViiV Healthcare (Consultant, Advisor or Review Panel member, Research Grant or Support) Chloe Orkin, MD, Gilead Sciences Inc. (Grant/Research Support, Scientific Research Study Investigator, Other Financial or Material Support)Janssen (Research Grant or Support, Other Financial or Material Support)Merck (Research Grant or Support, Other Financial or Material Support)ViiV Healthcare (Research Grant or Support, Other Financial or Material Support) Paul Sax, MD, Gilead Sciences (Consultant, Grant/Research Support)Janssen (Consultant)Merck (Consultant, Research Grant or Support)ViiV (Consultant, Research Grant or Support) Jeffrey L. Stephens, MD, Gilead Sciences Inc. (Scientific Research Study Investigator, Research Grant or Support) Ellen Koenig, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Amanda Clarke, MD, Gilead Sciences Inc. (Consultant, Scientific Research Study Investigator, Other Financial or Material Support, Conference attendance sponsorship)ViiV Healthcare (Consultant, Other Financial or Material Support, Conference travel sponsorship) Axel Baumgarten, MD, AbbVie (Advisor or Review Panel member, Speaker’s Bureau)Bristol-Myers Squibb (Advisor or Review Panel member, Speaker's Bureau)Gilead Sciences Inc. (Scientific Research Study Investigator, Advisor or Review Panel member, Speaker's Bureau)Janssen (Speaker’s Bureau)Merck (Advisor or Review Panel member) Cynthia Brinson, MD, Abbvie (Scientific Research Study Investigator)BI (Scientific Research Study Investigator)Gilead Sciences Inc. (Scientific Research Study Investigator, Advisor or Review Panel member, Speaker's Bureau, Personal fees)GSK (Scientific Research Study Investigator)Novo Nordisk (Scientific Research Study Investigator)ViiV Healthcare (Scientific Research Study Investigator, Advisor or Review Panel member, Speaker's Bureau) Moti Ramgopal, MD FIDSA, Abbvie (Scientific Research Study Investigator, Speaker's Bureau)Gilead (Consultant, Scientific Research Study Investigator, Speaker's Bureau)Janssen (Consultant, Scientific Research Study Investigator, Research Grant or Support, Speaker's Bureau)Merck (Consultant, Scientific Research Study Investigator)ViiV (Consultant, Scientific Research Study Investigator, Speaker's Bureau) Hailin Huang, PhD, Gilead Sciences Inc. (Employee, Shareholder) Terry Farrow, MD, Gilead Sciences Inc. (Employee, Shareholder) Jared Baeten, MD, PHD, Gilead Sciences Inc. (Employee, Shareholder) Jason Hindman, PharmD, Gilead Sciences Inc. (Employee, Shareholder) Hal Martin, MD, MPH, Gilead Sciences Inc. (Employee, Shareholder) Kimberly Workowski, MD, Nothing to disclose

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S681-S682
Author(s):  
Leila C Sahni ◽  
Eric A Naioti ◽  
Samantha M Olson ◽  
Angela P Campbell ◽  
Marian G Michaels ◽  
...  

Abstract Background Adult studies have demonstrated intra-season declines in influenza vaccine effectiveness (VE) with increasing time since vaccination; however, data in children are limited. Methods We conducted a prospective, test-negative study of children ages 6 months through 17 years hospitalized with acute respiratory illness at 7 pediatric medical centers each season in the New Vaccine Surveillance Network during the 2015-2016 through 2019-2020 influenza seasons. Cases were children with an influenza-positive molecular test; controls were influenza-negative children. Controls were matched to cases by illness onset date using 3:1 nearest neighbor matching. We estimated VE [100% x (1 – odds ratio)] by comparing the odds of receipt of ≥ 1 dose of influenza vaccine ≥ 14 days before the onset of illness that resulted in hospitalization among influenza-positive children to influenza-negative children. Changes in VE over time between vaccination date and illness onset date during each season were estimated using multivariable logistic regression models. Results Of 8,430 hospitalized children (4,781 [57%] male; median age 2.4 years), 4,653 (55%) received ≥ 1 dose of influenza vaccine. On average, 48% and 85% of children were vaccinated by the end of October and December, respectively. Influenza-positive cases (n=1,000; 12%) were less likely to be vaccinated than influenza-negative controls (39% vs. 61%, p< 0.001) and overall VE against hospitalization was 53% (95% CI: 46%, 60%). Pooling data across 5 seasons, the odds of any influenza-associated hospitalization increased 0.96% (95% CI: -0.76%, 2.71%) per week with a corresponding weekly decrease in VE of 0.45% (p=0.275). Odds of hospitalization with time since vaccination increased 0.66% (95% CI: -0.76%, 2.71%) per week in children ≤ 8 years (n=3,084) and 2.16% (95% CI: -1.68%, 6.15%) per week in children 9-17 years (n=771). No significant differences were observed by virus subtype or lineage. Figure 1. Declines in influenza VE over time from 2015-2016 through 2019-2020, overall (a) and by age group (b: ≤ 8 years; c: 9-17 years) Conclusion We observed minimal intra-season declines in VE against influenza-associated hospitalization in U.S. children. Vaccination following Advisory Committee on Immunization Practices guidelines and current timing of vaccine receipt is the best strategy for prevention of influenza-associated hospitalization in children. Disclosures Marian G. Michaels, MD, MPH, Viracor (Grant/Research Support, performs assay for research study no financial support) John V. Williams, MD, GlaxoSmithKline (Advisor or Review Panel member, Independent Data Monitoring Committee)Quidel (Advisor or Review Panel member, Scientific Advisory Board) Elizabeth P. Schlaudecker, MD, MPH, Pfizer (Grant/Research Support)Sanofi Pasteur (Advisor or Review Panel member) Natasha B. Halasa, MD, MPH, Genentech (Other Financial or Material Support, I receive an honorarium for lectures - it’s a education grant, supported by genetech)Quidel (Grant/Research Support, Other Financial or Material Support, Donation of supplies/kits)Sanofi (Grant/Research Support, Other Financial or Material Support, HAI/NAI testing) Natasha B. Halasa, MD, MPH, Genentech (Individual(s) Involved: Self): I receive an honorarium for lectures - it’s a education grant, supported by genetech, Other Financial or Material Support, Other Financial or Material Support; Sanofi (Individual(s) Involved: Self): Grant/Research Support, Research Grant or Support Janet A. Englund, MD, AstraZeneca (Consultant, Grant/Research Support)GlaxoSmithKline (Research Grant or Support)Meissa Vaccines (Consultant)Pfizer (Research Grant or Support)Sanofi Pasteur (Consultant)Teva Pharmaceuticals (Consultant) Christopher J. Harrison, MD, GSK (Grant/Research Support)Merck (Grant/Research Support)Pfizer (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support) Flor M. Munoz, MD, Biocryst (Scientific Research Study Investigator)Gilead (Scientific Research Study Investigator)Meissa (Other Financial or Material Support, DSMB)Moderna (Scientific Research Study Investigator, Other Financial or Material Support, DSMB)Pfizer (Scientific Research Study Investigator, Other Financial or Material Support, DSMB)Virometix (Other Financial or Material Support, DSMB)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S167-S167
Author(s):  
George Diaz ◽  
Jose Ramon Arribas ◽  
Jose Ramon Arribas ◽  
Philip A Robinson ◽  
Anna Maria Cattelan ◽  
...  

Abstract Background Remdesivir (RDV), a RNA polymerase inhibitor with potent in vitro activity against SARS-CoV-2, is the only treatment with demonstrated efficacy in shortening the duration of COVID-19. Here we report regional differences in clinical outcomes of severe COVID-19 patients treated with RDV, as part of an open-label, randomized phase-3 trial establishing RDV treatment duration. Methods Hospitalized patients with oxygen saturation ≤94%, a positive SARS-CoV-2 PCR in the past 4 days and radiographic evidence of pneumonia were randomized 1:1 to receive 5d or 10d of intravenous RDV. We compared d14 clinical outcomes of patients from different geographical areas, as measured by mortality rates, change in clinical status from baseline (BL) on a 7-point ordinal scale and change in O2 requirements from BL. Based on previous analyses in compassionate use data showing region as an important predictor of outcome, Italy was examined separately from other regions. Results 397 patients were treated with RDV, of which 229 (58%) were in the US, 77 (19%) Italy, 61 (15% in Spain), 12 (3%) Republic of Korea, 9 (2%) Singapore, 4 (1%) Germany, 4 (1%) Hong Kong and 1 (< 1%) Taiwan. BL clinical status was worse in Italy compared to other regions (72% vs 17% requiring high-flow oxygen delivery or higher), and Italian patients were more likely to be male than patients from other regions (69% vs 63%). Overall results showed 5d RDV was as effective as 10d. Mortality at d14 was higher in Italy (18%) compared to all other countries except Italy (7%). Similarly, clinical improvement at d14, measured as ≥2-point increase in the ordinal scale, was lower in Italian patients (39%) compared to all other countries combined (64%). (Fig.1). Figure 1. Change from Baseline in Clinical Status (measured on a 7-point Ordinal Scale) at d14. Conclusion Overall, our results demonstrate significant geographical differences in the clinical course of severe COVID-19 patients treated with RDV. We observed worse outcomes, such as increased mortality and lower rate of clinical improvement, in patients from Italy compared to other regions. Disclosures George Diaz, MD, NO DISCLOSURE DATA Jose Ramon Arribas, MD, Alexa (Advisor or Review Panel member, Speaker’s Bureau, Other Financial or Material Support, Personal fees)Gilead Sciences Inc. (Scientific Research Study Investigator, Advisor or Review Panel member, Speaker’s Bureau, Other Financial or Material Support, Personal fees)Janssen (Advisor or Review Panel member, Speaker’s Bureau, Other Financial or Material Support, Personal fees)Merck (Advisor or Review Panel member, Speaker’s Bureau, Other Financial or Material Support, Personal fees)Viiv Healthcare (Advisor or Review Panel member, Speaker’s Bureau, Other Financial or Material Support, Personal fees) Jose Ramon Arribas, MD, NO DISCLOSURE DATA Philip A. Robinson, MD, NO DISCLOSURE DATA Anna Maria Cattelan, MD, NO DISCLOSURE DATA Karen T. Tashima, MD, Bristol-Myers Squibb (Research Grant or Support)Gilead Sciences Inc. (Grant/Research Support, Scientific Research Study Investigator)GlaxoSmithKline (Research Grant or Support)Merck (Research Grant or Support)Tibotec (Research Grant or Support)Viiv Healthcare (Research Grant or Support) Owen Tak-Yin Tsang, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Owen Tak-Yin Tsang, MD, NO DISCLOSURE DATA Yao-Shen Chen, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Yao-Shen Chen, MD, NO DISCLOSURE DATA Devi SenGupta, MD, Gilead Sciences Inc. (Employee, Shareholder) Elena Vendrame, MD, NO DISCLOSURE DATA Christiana Blair, MS, Gilead Sciences (Employee, Shareholder) Anand Chokkalingam, PhD, Gilead Sciences (Employee) Anu Osinusi, MD, Gilead Sciences (Employee) Diana M. Brainard, MD, Gilead Sciences (Employee) Bum Sik Chin, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Bum Sik Chin, MD, NO DISCLOSURE DATA Christoph Spinner, MD, AbbVie (Advisor or Review Panel member, Other Financial or Material Support, Travel)Bristol-Myers Squibb (Grant/Research Support, Advisor or Review Panel member, Other Financial or Material Support, Travel)Gilead Sciences Inc. (Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member, Other Financial or Material Support, Travel)Janssen (Grant/Research Support, Advisor or Review Panel member, Other Financial or Material Support, Travel)MSD (Grant/Research Support, Advisor or Review Panel member, Other Financial or Material Support, Travel)Viiv Healthcare (Grant/Research Support, Advisor or Review Panel member, Other Financial or Material Support, Travel) Gerard J. Criner, MD, Gilead Sciences Inc. (Scientific Research Study Investigator)Regeneron (Scientific Research Study Investigator) Gerard J. Criner, MD, NO DISCLOSURE DATA Jose Muñoz, MD, NO DISCLOSURE DATA David Chien Boon Lye, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) David Chien Boon Lye, MD, NO DISCLOSURE DATA Robert L. Gottlieb, MD, Gilead Sciences Inc. (Scientific Research Study Investigator)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S343-S344
Author(s):  
Jose Ramon Arribas ◽  
Jose Ramon Arribas ◽  
Arun J Sanyal ◽  
Alex Soriano ◽  
Bum Sik Chin ◽  
...  

Abstract Background Remdesivir (RDV) has been shown to shorten recovery time and was well tolerated in patients with severe COVID-19. Hydroxychloroquine (HQN) is an experimental treatment for COVID-19. Effects of coadministration of HQN with RDV have not been studied and are relevant given the long half-life (~22 days) of HQN. We report the impact of concomitant HQN and RDV use on clinical outcomes and safety in patients with moderate COVID-19. Methods We enrolled hospitalized patients with confirmed SARS-CoV-2 infection, oxygen saturation >94% on room air, and radiological evidence of pneumonia. Patients were randomized 1:1:1 to receive 5d or 10d of intravenous RDV once daily plus standard of care (SoC), or SoC only. We compared patients on concomitant HQN (HQNpos) vs not (HQNneg). Clinical recovery was evaluated using Cox proportional hazards. Covariate adjustment included age, sex, race, region, symptom duration, oxygen support status and obesity. Recovery and adverse events (AEs) were assessed through death, discharge, or d14. Results Of 584 patients, 199 (34%) received HQN (5d RDV: n=57 [30%]; 10d RDV, n=49 [25%]; SoC: n=93 [47%]). Through median follow-up of 13d (range 1-41d), HQNpos patients on 5d or 10d RDV had a lower recovery rate (adjusted HR [95% CI] 0.78 [0.59, 1.03], p=0.09) with longer median time to recovery (8 vs 6 days) compared to HQNneg. HQNpos compared to HQNneg patients in 5d RDV showed a trend of reduced recovery rate (HR: 0.69 [0.45,1.04], p=0.080); such an effect was not observed in 10d RDV or SoC (Table 1). More HQNpos than HQNneg patients had AEs in RDV (5/10d) or SoC arms evaluated separately, and all arms combined. This difference was significant for AEs and SAEs for all arms combined after covariate adjustment (Table 2). Table 1. Table 2. Conclusion In moderate COVID-19 patients, concomitant HQN may delay recovery on RDV and showed no impact on recovery with SoC alone. The AE profile of HQNpos patients was worse than that observed for HQNneg patients, regardless of RDV treatment. Disclosures Jose Ramon Arribas, MD, Alexa (Advisor or Review Panel member, Speaker’s Bureau, Other Financial or Material Support, Personal fees)Gilead Sciences Inc. (Scientific Research Study Investigator, Advisor or Review Panel member, Speaker’s Bureau, Other Financial or Material Support, Personal fees)Janssen (Advisor or Review Panel member, Speaker’s Bureau, Other Financial or Material Support, Personal fees)Merck (Advisor or Review Panel member, Speaker’s Bureau, Other Financial or Material Support, Personal fees)Viiv Healthcare (Advisor or Review Panel member, Speaker’s Bureau, Other Financial or Material Support, Personal fees) Jose Ramon Arribas, MD, NO DISCLOSURE DATA Arun J. Sanyal, MD, AbbVie (Consultant)Akarna (Shareholder)Amarin (Consultant)Ardelyx (Consultant)Astra Zeneca (Consultant, Research Grant or Support)Boehringer (Consultant)Bristol Myers Squibb (Research Grant or Support)Conatus (Consultant)Cumberland (Research Grant or Support)Durect (Shareholder)Elsevier (Other Financial or Material Support, Royalties)Exhalenz (Shareholder)Fibrogen (Consultant)Genfit (Shareholder)Gilead Sciences Inc. (Consultant, Scientific Research Study Investigator, Research Grant or Support)Haemoshear (Shareholder)Indalo (Shareholder)Intercept (Research Grant or Support)Jannsen (Consultant)Lilly (Consultant)Malinckrodt (Research Grant or Support)Merck (Research Grant or Support)Nimbus (Consultant)Nitto Denko (Consultant)Novartis (Consultant)Pfizer (Consultant)Salix (Consultant)Sanyal Biotechnology (Employee, Shareholder, Other Financial or Material Support, President)Shire (Research Grant or Support)Takeda (Consultant)Tiziana (Shareholder)Tobira (Consultant)UptoDate (Other Financial or Material Support, Royalties)Zafgen (Consultant) Bum Sik Chin, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Bum Sik Chin, MD, NO DISCLOSURE DATA Shirin Kalimuddin, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Stefan Schreiber, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Emon Elboudwarej, PhD, Gilead Sciences Inc. (Employee, Shareholder) Yuan Tian, PhD, Gilead Sciences Inc. (Employee, Shareholder) Robert H. Hyland, MD, Gilead Sciences Inc. (Employee, Shareholder) Devi SenGupta, MD, Gilead Sciences Inc. (Employee, Shareholder) Anand Chokkalingam, PhD, Gilead Sciences (Employee) Anu Osinusi, MD, Gilead Sciences (Employee) Diana M. Brainard, MD, Gilead Sciences (Employee) Christoph Lübbert, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) David Chien Boon Lye, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) David Chien Boon Lye, MD, NO DISCLOSURE DATA Judith A. Aberg, MD, Theratechnology (Consultant) Enrique Navas Elorza, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Karen T. Tashima, MD, Bristol-Myers Squibb (Research Grant or Support)Gilead Sciences Inc. (Grant/Research Support, Scientific Research Study Investigator)GlaxoSmithKline (Research Grant or Support)Merck (Research Grant or Support)Tibotec (Research Grant or Support)Viiv Healthcare (Research Grant or Support) Mark McPhail, MD, Gilead Sciences Inc. (Scientific Research Study Investigator)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S811-S812
Author(s):  
Laura Hammitt ◽  
Laura Hammitt ◽  
Ron Dagan ◽  
Yuan Yuan ◽  
Manuel Baca Cots ◽  
...  

Abstract Background Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection (LRTI) in infants. Nirsevimab is a single-dose monoclonal antibody with extended half-life that was shown to protect preterm infants 29 to < 35 weeks gestation against RSV LRTI. However, most medically attended (MA) cases occur in otherwise healthy, term infants for whom there is currently no effective RSV prevention strategy. We report the primary analysis of efficacy and safety, along with the impact of nirsevimab in late preterm and term infants (≥ 35 weeks gestation) in the phase 3 MELODY study (NCT03979313). Methods Infants were randomized 2:1 to receive one intramuscular injection of nirsevimab (50 mg if < 5 kg; 100 mg if ≥ 5 kg at dosing) or placebo entering their first RSV season. The primary endpoint was the incidence of MA RSV LRTI over 150 days postdose. Cases met predefined clinical criteria of disease severity and were confirmed by real-time reverse-transcriptase PCR. Safety was evaluated through 360 days postdose. Enrollment started on 23 July 2019 and was suspended following the declaration of the COVID-19 pandemic by the WHO on 11 March 2020. Results Overall, 1490 infants were randomized and included in the intent-to-treat population; 1465 (98%) completed the 150-day efficacy follow-up, and 1367 (92%) completed the 360-day safety follow-up. The incidence of MA RSV LRTI was 1.2% (n=12/994) in the nirsevimab group and 5.0% (n=25/496) in the placebo group, giving nirsevimab an efficacy of 74.5% (95% confidence interval [CI]: 49.6, 87.1; p< 0.0001). Nirsevimab averted 93.6 (95% CI 63.0, 124.0) MA LRTIs per 1000 infants dosed. Nirsevimab was well tolerated, with similar rates of adverse events (87.4% nirsevimab; 86.8% placebo) and serious adverse events (6.8% nirsevimab; 7.3% placebo) between groups. Conclusion In this phase 3 study, a single dose of nirsevimab protected late preterm and term infants against MA RSV LRTI over an RSV season with a favorable safety profile. Approximately 11 infants need to be immunized to prevent 1 case of LRTI; nirsevimab has the potential to be an important intervention to reduce the burden of RSV LRTI in healthy infants. Disclosures Laura Hammitt, MD, MedImmune (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support)Merck & Co., Inc. (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support)Novavax (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support)Pfizer (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support) Laura Hammitt, MD, MedImmune (Individual(s) Involved: Self): Grant/Research Support, Research grant to my institution; Merck (Individual(s) Involved: Self): Grant/Research Support, Research grant to my institution; Pfizer (Individual(s) Involved: Self): Grant/Research Support, Research grant to my institution Ron Dagan, MD, Medimmune/AstraZeneca (Grant/Research Support, Scientific Research Study Investigator, Research Grant or Support)MSD (Consultant, Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member, Research Grant or Support, Speaker’s Bureau)Pfizer (Consultant, Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member, Research Grant or Support, Speaker’s Bureau) Yuan Yuan, PhD, AstraZeneca (Employee, Shareholder) Shabhir A. Mahdi, PhD, BMGF (Research Grant or Support)EDCTP (Research Grant or Support)GlaxoSmithKline (Research Grant or Support)Melody (Research Grant or Support)Minervax (Research Grant or Support)Novavax (Research Grant or Support)SAMRC (Research Grant or Support) William J. Muller, MD, PhD, Ansun (Scientific Research Study Investigator)Astellas (Scientific Research Study Investigator)AstraZeneca (Scientific Research Study Investigator)Genentech (Scientific Research Study Investigator)Gilead (Scientific Research Study Investigator)Janssen (Scientific Research Study Investigator)Karius (Scientific Research Study Investigator)Melinta (Scientific Research Study Investigator)Merck (Scientific Research Study Investigator)Nabriva (Scientific Research Study Investigator)Seqirus (Scientific Research Study Investigator)Tetraphase (Scientific Research Study Investigator) William J. Muller, MD, PhD, Ansun (Individual(s) Involved: Self): Grant/Research Support; Astellas (Individual(s) Involved: Self): Research Grant or Support; AstraZeneca (Individual(s) Involved: Self): Grant/Research Support; BD (Individual(s) Involved: Self): Research Grant or Support; Eli Lilly (Individual(s) Involved: Self): Grant/Research Support; Gilead (Individual(s) Involved: Self): Grant/Research Support; Karius, Inc. (Individual(s) Involved: Self): Grant/Research Support, Scientific Research Study Investigator; Melinta (Individual(s) Involved: Self): Grant/Research Support; Merck (Individual(s) Involved: Self): Grant/Research Support; Moderna (Individual(s) Involved: Self): Grant/Research Support; Nabriva (Individual(s) Involved: Self): Grant/Research Support; Seqirus (Individual(s) Involved: Self): Consultant; Tetraphase (Individual(s) Involved: Self): Grant/Research Support Heather J. Zar, PhD, AstraZeneca (Grant/Research Support)Novavax (Grant/Research Support)Pfizer (Grant/Research Support, Advisor or Review Panel member) Dennis Brooks, MD, AstraZeneca (Employee) Amy Grenham, MSc, AstraZeneca (Employee, Shareholder) Ulrika Wählby Hamrén, PhD, AstraZeneca R&D (Employee, Shareholder) Vaishali S. Mankad, MD, AstraZeneca (Employee) Therese Takas, BSc, AstraZeneca (Employee, Other Financial or Material Support, Own stock in AstraZeneca) Jon Heinrichs, PhD, AstraZeneca (Shareholder)Bristol Myers Squibb (Shareholder)J&J (Shareholder)Merck (Shareholder)Organon (Shareholder)Procter & Gamble (Shareholder)Sanofi (Shareholder)Sanofi Pasteur (Employee) Amanda Leach, MRCPCH, AstraZeneca (Employee, Shareholder) M. Pamela Griffin, MD, AstraZeneca (Employee) Tonya L. Villafana, PhD, AstraZeneca (Employee)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S517-S518
Author(s):  
Moti Ramgopal ◽  
Peter Ruane ◽  
Yongwu Shao ◽  
Ramin Ebrahimi ◽  
Alex Kintu ◽  
...  

Abstract Background In DISCOVER, a multinational randomized controlled trial, F/TAF demonstrated noninferior efficacy compared to F/TDF for HIV prevention with improved bone mineral density and renal safety biomarkers at the primary endpoint (when all participants had reached 48 weeks and 50% had reached 96 weeks) and at week (W) 96, the end of the blinded phase. We now report W144 outcomes for participants who were randomized to F/TAF and continued F/TAF in the open-label extension (OLE) phase. Methods All participants who completed the randomized blinded phase could opt to receive F/TAF for at least 48 weeks in the OLE phase. We evaluated HIV incidence in participants on F/TAF through W144 and assessed changes in hip and spine bone mineral density (BMD) and in glomerular function (eGFR) from baseline to W144. Results 2,080 of the 2,694 participants initially randomized to F/TAF opted into the OLE phase, and 1,933 were still on study drug through W144, thereby leading to a total of 7,885 person-years (PY) of follow-up on F/TAF. Eight participants taking F/TAF acquired HIV in the blinded phase and 3 in the OLE phase. Dried blood spot analyses on the 3 OL infections found tenofovir diphosphate levels consistent with low adherence. Genotypic resistance testing showed no relevant resistance mutations for the 3 new infections. Among participants taking F/TAF, HIV incidence was 0.16/100 PY (95% CI 0.06-0.33) at the primary endpoint, 0.16/100 PY (95% CI 0.07-0.31) through 96 weeks and 0.14/100 PY (95% CI 0.07-0.25) through 144 weeks. Participants taking F/TAF had increases in hip BMD (mean percentage change +0.54%) and in spine BMD (mean percentage change +1.02%) from baseline to W144 (Figure 1). Median eGFR increased over 144 weeks, with a median increase of 2.6 mL/min from baseline to week 144. Participants in the F/TAF arm gained a median 2.3 kg (IQR -0.9-5.8) over 3 years of follow up. Figure 1. Changes in hip and spine bone mineral density and in eGFR through Week 144 Conclusion The OLE of DISCOVER allowed for a long-term assessment (144 wks.) of F/TAF for PrEP. HIV incidence remained low with BMD and renal function parameters remaining stable through 144 weeks of follow-up. These findings demonstrate that F/TAF is a safe and effective option for long-term use in people who would benefit from PrEP. Disclosures Moti Ramgopal, MD FACP FIDSA, Abbvie (Scientific Research Study Investigator, Speaker’s Bureau)Gilead (Consultant, Scientific Research Study Investigator, Speaker’s Bureau)Janssen (Consultant, Scientific Research Study Investigator, Research Grant or Support, Speaker’s Bureau)Merck (Consultant, Scientific Research Study Investigator)ViiV (Consultant, Scientific Research Study Investigator, Speaker’s Bureau) Peter Ruane, MD, AbbVie (Consultant, Research Grant or Support)Allergan (Research Grant or Support)Gilead Sciences Inc. (Consultant, Research Grant or Support, Shareholder, Speaker’s Bureau)Merck (Consultant, Research Grant or Support)ViiV Healthcare (Consultant, Research Grant or Support) Yongwu Shao, PhD, Gilead Sciences Inc. (Employee, Shareholder) Ramin Ebrahimi, MSc, Gilead Sciences Inc. (Employee, Shareholder) Alex Kintu, MD, ScD, Gilead Sciences Inc. (Employee, Shareholder) Christoph C. Carter, MD, Gilead Sciences Inc. (Employee, Shareholder) Moupali Das, MD, Gilead Sciences Inc. (Employee, Shareholder) Jared Baeten, MD, PHD, Gilead Sciences Inc. (Employee, Shareholder) Cynthia Brinson, MD, Abbvie (Scientific Research Study Investigator)BI (Scientific Research Study Investigator)Gilead Sciences Inc. (Scientific Research Study Investigator, Advisor or Review Panel member, Speaker’s Bureau, Personal fees)GSK (Scientific Research Study Investigator)Novo Nordisk (Scientific Research Study Investigator)ViiV Healthcare (Scientific Research Study Investigator, Advisor or Review Panel member, Speaker’s Bureau) Peter Shalit, MD, PhD, Abbvie (Grant/Research Support)Gilead Sciences (Consultant, Grant/Research Support, Speaker’s Bureau)Glaxo Smithkline (Consultant, Grant/Research Support)Janssen (Consultant, Grant/Research Support, Speaker’s Bureau)Merck (Grant/Research Support, Speaker’s Bureau)Thera (Speaker’s Bureau)ViiV Healthcare (Speaker’s Bureau) Karam Mounzer, MD, Epividian (Advisor or Review Panel member)Gilead Sciences Inc. (Consultant, Scientific Research Study Investigator, Research Grant or Support, Speaker’s Bureau)Janssen (Consultant, Research Grant or Support, Speaker’s Bureau)Merck (Research Grant or Support, Speaker’s Bureau)ViiV Healthcare (Consultant, Speaker’s Bureau)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S166-S167
Author(s):  
Francisco M Marty ◽  
Prashant Malhotra ◽  
Robert L Gottlieb ◽  
Karen T Tashima ◽  
Massimo Galli ◽  
...  

Abstract Background Remdesivir (RDV) shortens time to recovery time in patients with severe COVID-19. Its effect in patients with moderate COVID-19 remains unclear. Methods We conducted an open-label, phase 3 trial (NCT04252664) involving hospitalized patients with confirmed SARS-CoV-2 infection, evidence of pulmonary infiltrates, and oxygen saturation >94% on room air. Patients were randomly assigned 1:1:1 to receive up to 5d or 10d of RDV with standard of care (SoC), or SoC alone; patients could be discharged prior to completing per-protocol assigned treatment duration. RDV was dosed intravenously at 200 mg on d1, 100 mg daily thereafter. Patients were evaluated daily while hospitalized, and via telephone if discharged. The primary endpoint was clinical status on d11 assessed on a 7-point ordinal scale. Results regarding the primary endpoint are expected to be published before IDWeek 2020; we plan to present d28 results at the meeting. Results In total, 584 patients underwent randomization and started their assigned treatment (191, 5d RDV; 193, 10d RDV; 200, SoC). By d11, ³ 2 point improvement on the ordinal scale occurred in 70% of patients in the 5d arm, 65% in the 10d arm, and 61% in the SoC arm. Patients in the 5d RDV arm were significantly more likely to have an improvement in clinical status than those receiving SoC (odds ratio [OR], 1.65; 95% confidence interval [CI], 1.09–2.48; P=0.017); OR of improvement for the 10d RDV arm compared to SoC was 1.31 (95% CI, 0.88–1.95]; p=0.183). This improvement in the 5-day arm over the SOC arm was noted from d6 through d11. We observed a peak of discharges corresponding with the assigned treatment duration of RDV, with increased discharges at d6 in the 5-day arm and at d11 in the 10-day arm. A worsening of clinical status of ≥ 1 point in the ordinal scale was observed more commonly in the SoC am (n=19, 10%) versus the 5d RDV (n=7, 4%) and 10d RDV (n=9, 5%). Conclusion RDV for up to 5 days was superior to SoC in improving the clinical status of patients with moderate COVID-19 by d11. We will report d28 outcomes at the meeting. Disclosures Francisco M. Marty, MD, Allovir (Consultant)Amplyx (Consultant)Ansun (Scientific Research Study Investigator)Avir (Consultant)Cidara (Scientific Research Study Investigator)F2G (Consultant, Scientific Research Study Investigator)Kyorin (Consultant)Merck (Consultant, Grant/Research Support, Scientific Research Study Investigator)New England Journal of Medicine (Other Financial or Material Support, Honorarium for Video)Regeneron (Consultant, Scientific Research Study Investigator)ReViral (Consultant)Scynexis (Scientific Research Study Investigator)Symbio (Consultant)Takeda (Scientific Research Study Investigator)United Medical (Consultant)WHISCON (Scientific Research Study Investigator) Prashant Malhotra, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Robert L. Gottlieb, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Karen T. Tashima, MD, Bristol-Myers Squibb (Research Grant or Support)Gilead Sciences Inc. (Grant/Research Support, Scientific Research Study Investigator)GlaxoSmithKline (Research Grant or Support)Merck (Research Grant or Support)Tibotec (Research Grant or Support)Viiv Healthcare (Research Grant or Support) Massimo Galli, MD, Gilead Sciences Inc. (Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member, Other Financial or Material Support, Personal fees) Louis Yi Ann Chai, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Devi SenGupta, MD, Gilead Sciences Inc. (Employee, Shareholder) Robert H. Hyland, MD, Gilead Sciences Inc. (Employee, Shareholder) Hongyuan Wang, PhD, Gilead Sciences Inc. (Employee, Shareholder) Lijie Zhong, PhD, Gilead Sciences Inc. (Employee, Shareholder) Huyen Cao, MD, Gilead Sciences Inc. (Employee, Shareholder) Anand Chokkalingam, PhD, Gilead Sciences (Employee) Anu Osinusi, MD, Gilead Sciences (Employee) Diana M. Brainard, MD, Gilead Sciences (Employee) Michael Brown, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Ane Josune Goikoetxea, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Mamta Jain, MD, Gilead Sciences Inc. (Scientific Research Study Investigator, Research Grant or Support)GlaxoSmithKline (Advisor or Review Panel member)Janssen (Research Grant or Support)Merck (Research Grant or Support) David Shu Cheong Hui, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Enos Bernasconi, MD, Gilead Sciences Inc. (Scientific Research Study Investigator) Christoph Spinner, MD, AbbVie (Advisor or Review Panel member, Other Financial or Material Support, Travel)Bristol-Myers Squibb (Grant/Research Support, Advisor or Review Panel member, Other Financial or Material Support, Travel)Gilead Sciences Inc. (Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member, Other Financial or Material Support, Travel)Janssen (Grant/Research Support, Advisor or Review Panel member, Other Financial or Material Support, Travel)MSD (Grant/Research Support, Advisor or Review Panel member, Other Financial or Material Support, Travel)Viiv Healthcare (Grant/Research Support, Advisor or Review Panel member, Other Financial or Material Support, Travel)


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S642-S642
Author(s):  
Barbara D Alexander ◽  
Oliver Cornely ◽  
Peter Pappas ◽  
Rachel Miller ◽  
Jose A Vazquez ◽  
...  

Abstract Background Candida infections resistant to currently available antifungals are an emerging global threat. Ibrexafungerp is an investigational broad-spectrum glucan synthase inhibitor antifungal with activity against Candida and Aspergillus species, including azole- and echinocandin-resistant strains. A Phase 3 open-label, single-arm study of oral ibrexafungerp (FURI) (Clinicaltrials.gov NCT03059992) is ongoing for the treatment of patients (≥18 years) with fungal diseases who are intolerant of or refractory to standard antifungal therapies. Methods An independent Data Review Committee (DRC) provided an assessment of treatment response for 41 patients. Patients were enrolled in 22 centers from 6 countries. Patients were eligible for enrollment if they had proven or probable, invasive or severe mucocutaneous candidiasis and documented evidence of failure of, intolerance to, or toxicity related to a currently approved standard-of-care antifungal treatment or could not receive approved oral antifungal options (e.g., susceptibility of the organism) and a continued IV antifungal therapy was undesirable or unfeasible. Results The 41 patients assessed had the following infection types: intra-abdominal abscesses, oropharyngeal candidiasis, esophageal candidiasis, candidemia, and others. The DRC adjudicated 23 patients (56%) as achieving complete or partial response, 11 patients (27%) maintaining stable disease, 6 patients (15%) with progression of disease and one case was considered as indeterminate. The efficacy of oral ibrexafungerp by pathogen is shown in Table 1. Ibrexafungerp was well-tolerated with the most common treatment-related adverse events being of gastrointestinal origin. No deaths due to progression of fungal disease were reported. Table 1: Ibrexafungerp Outcomes by Pathogen Conclusion Preliminary analysis of these 41 cases indicate that oral ibrexafungerp provides a favorable therapeutic response in the majority of patients with difficult to treat Candida spp. infections, including those caused by non-albicans Candida species. Disclosures Barbara D. Alexander, MD, MHS, SCYNEXIS, Inc. (Employee, Scientific Research Study Investigator, Research Grant or Support) Oliver Cornely, Prof., Actelion (Grant/Research Support)Actelion (Other Financial or Material Support, Personal fees)Al Jazeera Pharmaceuticals (Consultant)Allecra Therapeutics (Other Financial or Material Support, Personal fees)Amplyx (Other Financial or Material Support, Personal fees)Amplyx (Grant/Research Support)Astellas (Grant/Research Support)Astellas (Other Financial or Material Support, Personal fees)Basilea (Other Financial or Material Support, Personal fees)Basilea (Grant/Research Support)Biosys UK Limited (Other Financial or Material Support, Personal fees)Cidara (Other Financial or Material Support, Personal fees)Cidara (Grant/Research Support)Da Volterra (Grant/Research Support)Da Volterra (Other Financial or Material Support, Personal fees)Entasis (Other Financial or Material Support, Personal fees)F2G (Other Financial or Material Support)F2G (Grant/Research Support)Gilead (Grant/Research Support)Gilead (Other Financial or Material Support, Personal fees)Grupo Biotoscana (Other Financial or Material Support, Personal fees)Janssen Pharmaceuticals (Grant/Research Support)Matinas (Other Financial or Material Support, Personal fees)Medicines Company (Grant/Research Support)MedPace (Grant/Research Support)MedPace (Other Financial or Material Support, Personal fees)Melinta Therapeutics (Grant/Research Support)Menarini Ricerche (Other Financial or Material Support, Personal fees)Merck/MSD (Other Financial or Material Support, Personal fees)Merck/MSD (Grant/Research Support)Mylan Pharmaceuticals (Consultant)Nabriva Therapeutics (Other Financial or Material Support, Personal fees)Octapharma (Other Financial or Material Support, Personal fees)Paratek Pharmaceuticals (Other Financial or Material Support, Personal fees)Pfizer (Other Financial or Material Support, Personal fees)Pfizer (Grant/Research Support)PSI (Other Financial or Material Support, Personal fees)Rempex (Other Financial or Material Support, Personal fees)Roche Diagnostics (Other Financial or Material Support, Personal fees)Scynexis (Other Financial or Material Support, Personal fees)Scynexis (Grant/Research Support)Seres Therapeutics (Other Financial or Material Support, Personal fees)Tetraphase (Other Financial or Material Support, Personal fees) Peter Pappas, MD, SCYNEXIS, Inc. (Consultant, Advisor or Review Panel member, Research Grant or Support) Rachel Miller, MD, SCYNEXIS, Inc. (Scientific Research Study Investigator) Luis Ostrosky-Zeichner, MD, Amplyx (Scientific Research Study Investigator)Astellas (Consultant, Scientific Research Study Investigator, Other Financial or Material Support, Non-branded educational speaking)Biotoscana (Consultant, Other Financial or Material Support, Non-branded educational speaking)Cidara (Consultant, Scientific Research Study Investigator)F2G (Consultant)Gilead (Consultant)Mayne (Consultant)Octapharma (Consultant)Pfizer (Other Financial or Material Support, Non-branded educational speaking)Scynexis (Consultant, Grant/Research Support, Scientific Research Study Investigator)Stendhal (Consultant)Viracor (Consultant) Andrej Spec, MD, SCYNEXIS, Inc. (Scientific Research Study Investigator, Advisor or Review Panel member) Riina Rautemaa-Richardson, DDS, PhD, FRCPath, SCYNEXIS, Inc. (Scientific Research Study Investigator) Robert Krause, MD, SCYNEXIS, Inc. (Scientific Research Study Investigator) Caryn Morse, MD, SCYNEXIS, Inc. (Scientific Research Study Investigator) John W. Sanders, III, MD, SCYNEXIS, Inc. (Scientific Research Study Investigator) David Andes, MD, SCYNEXIS, Inc. (Scientific Research Study Investigator, Advisor or Review Panel member) George Lyon, MD, SCYNEXIS, Inc. (Scientific Research Study Investigator) Francisco M. Marty, MD, Allovir (Consultant)Amplyx (Consultant)Ansun (Scientific Research Study Investigator)Avir (Consultant)Cidara (Scientific Research Study Investigator)F2G (Consultant, Scientific Research Study Investigator)Kyorin (Consultant)Merck (Consultant, Grant/Research Support, Scientific Research Study Investigator)New England Journal of Medicine (Other Financial or Material Support, Honorarium for Video)Regeneron (Consultant, Scientific Research Study Investigator)ReViral (Consultant)Scynexis (Scientific Research Study Investigator)Symbio (Consultant)Takeda (Scientific Research Study Investigator)United Medical (Consultant)WHISCON (Scientific Research Study Investigator) Marisa H. Miceli, MD, FIDSA, SCYNEXIS, Inc. (Advisor or Review Panel member) Thomas F. Patterson, MD, SCYNEXIS, Inc. (Advisor or Review Panel member) Martin Hoenigl, MD, SCYNEXIS, Inc. (Grant/Research Support, Scientific Research Study Investigator, Advisor or Review Panel member) Nkechi Azie, MD, SCYNEXIS, Inc. (Employee, Shareholder) David A. Angulo, MD, SCYNEXIS, Inc. (Employee, Shareholder)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S14-S15
Author(s):  
Marcus Pereira ◽  
Carlos Cervera ◽  
Camille Kotton ◽  
Camille Kotton ◽  
Joseph Sasadeusz ◽  
...  

Abstract Background Refractory or resistant (R/R) cytomegalovirus (CMV) infection after hematopoietic cell transplant (HCT) and solid organ transplant (SOT) cause serious, potentially fatal complications; therapeutic options are limited. In a Phase 3 study (NCT02931539), maribavir (MBV) was superior to investigator-assigned therapy (IAT; val/ganciclovir, foscarnet, cidofovir) for CMV clearance (Wk 8) and clearance plus symptom control (Wk 8 through Wk 16) in HCT/SOT recipients with R/R CMV infections. Here we present further study results on efficacy and safety of MBV in the rescue arm. Methods Patients (pts) were stratified and randomized 2:1 to MBV (400 mg/bid) or IAT for 8-wk treatment then 12-wk follow-up. After minimum 3 wks’ treatment, pts in the IAT group meeting criteria (worsening/lack of improvement of CMV infection or failure to achieve viremia clearance plus IAT intolerance) could enter a MBV rescue arm (8-wk treatment, 12-wk follow-up). In the rescue arm, efficacy was evaluated by confirmed CMV viremia clearance (plasma CMV DNA < 137 IU/mL in 2 consecutive tests ≥ 5 days apart) at end of Wk 8 and confirmed clearance with symptom control at Wk 8 through Wk 16. Safety was assessed. Results A total of 352 pts were randomized (MBV: 235, IAT: 117, randomized set). Confirmed CMV viremia clearance at Wk 8 was achieved in 131 (55.7%) and 28 (23.9%) pts, respectively, in the randomized set. Having met criteria, 22 (18.8%) pts entered the MBV rescue arm; at entry, 6 (27.3%) pts had developed neutropenia and 9 (40.9%) had increased serum creatinine (Table 1). At Wk 8 of rescue therapy, 11 (50.0%) pts achieved confirmed CMV viremia clearance; 6 (27.3%) pts had CMV clearance with symptom control at Wk 8 maintained through Wk 16 (Table 2). All 22 pts reported treatment-emergent adverse events (TEAEs; Table 3); most common TEAEs of special interest were nausea, vomiting, and diarrhea (54.5%), and taste disturbance (50.0%). Neutropenia and acute kidney injury TEAEs were reported by 0 and 3 pts in the rescue arm, respectively. Table 1. Summary of patients from IAT-randomized group meeting criteria for entry into MBV rescue arm* Table 2. Patients achieving confirmed CMV viremia clearance at end of Wk 8 (end of treatment) or achieving confirmed CMV viremia clearance and symptom control at end of Wk 8 maintained through Wk 16 Table 3. Treatment-emergent adverse events during the on-rescue observation period Conclusion Rescue arm data show MBV was efficacious for R/R CMV infection in HCT/SOT recipients inadequately responding to IAT with/without intolerance and had a similar safety profile to that reported for pts in the randomized MBV group. Disclosures Marcus Pereira, MD, Hologic (Scientific Research Study Investigator)Merck (Scientific Research Study Investigator)Takeda (Scientific Research Study Investigator, Advisor or Review Panel member) Carlos Cervera, MD, PhD, Avir Pharma (Consultant, Advisor or Review Panel member)Lilly (Consultant, Advisor or Review Panel member)Merck (Consultant, Advisor or Review Panel member, Research Grant or Support)Sunovion (Consultant, Advisor or Review Panel member)Takeda (Consultant, Advisor or Review Panel member)Veritas Pharma (Consultant, Advisor or Review Panel member) Camille Kotton, MD, Shire/Takeda (Advisor or Review Panel member) Camille Kotton, MD, UpToDate (Individual(s) Involved: Self): I write chapters on zoonoses for UpToDate., Independent Contractor Joseph Sasadeusz, MBBS, PhD, Abbvie (Grant/Research Support, Other Financial or Material Support, Consulting fee: speaker)Gilead (Other Financial or Material Support, Speaker)Merck (Grant/Research Support, Consulting fee: speaker)Takeda (Grant/Research Support) Jingyang Wu, MS, Shire Human Genetic Therapies, Inc., a Takeda company (Employee, Other Financial or Material Support, Holds stock/stock options) Martha Fournier, MD, Shire Human Genetic Therapies, Inc., a Takeda company (Employee, Other Financial or Material Support, Holds stock/stock options)Shire ViroPharma, a Takeda company (Other Financial or Material Support, This study was funded by Shire ViroPharma, a Takeda company)


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S281-S281
Author(s):  
Abby Sung ◽  
Adam Bailey ◽  
Meghan Wallace ◽  
Henry B Stewart ◽  
David McDonald ◽  
...  

Abstract Background Immunocompromised (IC) patients (pts) can have prolonged SARS-CoV-2 PCR positivity, even after resolution of COVID-19 symptoms. This study aimed to determine if viable virus could be detected in samples collected > 21 days after an initial positive (pos) SARS-CoV-2 PCR in IC pts. Methods We obtained 20 remnant SARS-CoV-2 PCR pos nasopharyngeal swabs from IC pts (bone marrow or solid organ transplant, high dose steroids, immunosuppressive medications) with a pos repeat PCR within the previous 30 days. The repeat specimens were cultured on Vero-hACE2-TMPRSS2 cells and incubated for 96 hours to assess viral viability. Viable RNA and infectious virus in the cultured cells were measured by qPCR and infectious plaque assays. RNA sequencing was performed on a HiSeq platform (Illumina). Samples also underwent SARS-CoV-2 antigen (Ag) testing (BD Veritor). Clinical data were extracted from the electronic health record by chart review. Results Pt characteristics are in Table 1. Viral cultures from the repeat specimen were negative (neg) for 18 pts and pos for 2 (Table 2). Pt 1 is a 60M treated with obinatuzumab 19 days prior to his first pos PCR test, with repeat specimen collected 21 days later (cycle threshold (Ct) not available). Pt 1 had a low viral titer (27 PFU/mL) & a D614G mutation on sequencing. Pt 2 is a 75M treated with rituximab 10 days prior to his first pos PCR test, with repeat specimen collected 23 days later (Ct 27.56/27.74). Pt 2 had a high viral titer (2e6 PFU/mL) and D614G, S98F, and S813I mutations. Demographics of Study Population (N=20) Characteristics of patients with a positive SARS-CoV-2 viral culture Conclusion 90% of specimens collected > 21 days after an initial pos SARS-CoV-2 PCR did not have viable virus detected on their repeat specimen. The 2 pts with pos viral cultures had active hematologic malignancies treated with an anti-CD20 mAb at the time of COVID-19 diagnosis. One pt had a high concentration of active, viable virus. No known variants of concern were noted in this cohort, collected in Q2 2020, though prolonged replication is a risk for variant development. Further data are needed about risk factors for persistent viable viral shedding & methods to prevent transmission of viable virus from IC hosts. Disclosures Victoria J. Fraser, MD, CDC Epicenters (Grant/Research Support)Cigna/Express Scripts (Other Financial or Material Support, Spouse is Chief Clinical Officer)Doris Duke Fund to Retain Clinical Scientists (Grant/Research Support, Research Grant or Support)Foundation for Barnes-Jewish Hospital (Grant/Research Support, Research Grant or Support)NIH (Grant/Research Support, Research Grant or Support) Victoria J. Fraser, MD, Centers for Disease Control and Prevention (Individual(s) Involved: Self): Grant/Research Support, Research Grant or Support; Cigna/Express Scripts (Individual(s) Involved: Spouse/Partner): Employee; Doris Duke Charitable Foundation (Individual(s) Involved: Self): Grant/Research Support, Research Grant or Support; National Institutes of Health (Individual(s) Involved: Self): Grant/Research Support, Research Grant or Support; The Foundation for Barnes-Jewish Hospital (Individual(s) Involved: Self): Grant/Research Support, Research Grant or Support Michael S. Diamond, MD, PhD, Carnival Corporation (Consultant)Emergent BioSolutions (Grant/Research Support)Fortress Biotech (Consultant)Immunome (Advisor or Review Panel member)Inbios (Consultant)Moderna (Grant/Research Support, Advisor or Review Panel member)Vir Biotechnology (Consultant, Grant/Research Support) Carey-Ann Burnham, PhD, BioFire (Grant/Research Support, Other Financial or Material Support)bioMerieux (Grant/Research Support)Cepheid (Consultant, Grant/Research Support)Luminex (Grant/Research Support)Roche (Other Financial or Material Support) Carey-Ann Burnham, PhD, BioFire (Individual(s) Involved: Self): Grant/Research Support; bioMerieux (Individual(s) Involved: Self): Grant/Research Support, Scientific Research Study Investigator, Speakers’ bureau; Cepheid (Individual(s) Involved: Self): Consultant, Grant/Research Support, Scientific Research Study Investigator; Luminex (Individual(s) Involved: Self): Scientific Research Study Investigator Hilary Babcock, MD, MPH, FIDSA, FSHEA, Nothing to disclose


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S72-S72
Author(s):  
Peter G Pappas ◽  
Andrej Spec ◽  
Marisa Miceli ◽  
Gerald McGwin ◽  
Rachel McMullen ◽  
...  

Abstract Background C-itra is the drug of choice for treatment of most non-CNS, non-life-threatening forms of endemic mycoses (EM), including histoplasmosis, blastomycosis, coccidioidomycosis, sporotrichosis and talaromycosis. SUBA represents a new formulation of itraconazole that utilizes nanotechnology to improve bioavailability when administered orally. SUBA is formulated as nanoparticles allowing for absorption in the small bowel while not relying on gastric acidity for optimal absorption. MSG-15 is an open-label, comparative clinical trial comparing SUBA to c-itra for the treatment of EM. Herein we report the final PK and AE profiles of these two compounds. Methods Subjects with proven and probable EM were eligible this open-label comparative study. The protocol allowed up to 14 d of prior therapy with any antifungal for this episode of EM. Subjects were randomized to receive either SUBA 130 mg po bid or c-itra 200 mg po bid for up to 6 months. Follow up occurred at 7, 14, 28, 42, 84 and 180 d post-enrollment. PK samples were obtained at 7, 14, and 42 d. Clinical assessment, including symptom assessment, AEs, overall drug tolerance, and quality of life were assessed at each visit. We used descriptive statistics for this analysis. Results 89 subjects with EM entered the trial, including 43 on SUBA and 46 on c-itra. We measured PK serum levels of itra and hydroxyl-itra at days 7, 14, and 42 and these data are depicted in Figures 1-3. There were no significant differences in these levels, including combined itra/hydroxyl-itra levels, among the two study arms. AUC for itra and hydroxyl-itra were similar for both arms. AEs as assessed at each study evaluation were also quite similar among the two study arms. Overall, any AE occurred in 74% vs 85% of SUBA and c-itra recipients, respectively (NS). Drug-related AEs occurred in 35% vs 41% of SUBA and itra recipients, respectively (NS). Most common drug-related AEs included cardiovascular (edema and hypertension), nausea and loss of appetite. Combined Itraconazole and Hydroxy-itraconazole Concentration Over Time Conclusion Compared to c-itra, SUBA demonstrates almost identical serum levels despite being dosed at roughly 60% standard dosing for c-itra (130 mg po bid vs 200 mg po bid). SUBA is slightly better tolerated than c-itra, although the specific AEs are similar. Disclosures Peter G. Pappas, MD, Astellas (Research Grant or Support)Cidara (Research Grant or Support)F2G (Consultant)Matinas (Consultant, Scientific Research Study Investigator)Mayne Pharma (Research Grant or Support)Scynexis (Research Grant or Support) Andrej Spec, MD, MSCI, Mayne Pharma (Grant/Research Support) Marisa Miceli, MD, SCYNEXIS, Inc. (Advisor or Review Panel member) George R. R. Thompson III, III, MD, Amplyx (Consultant, Grant/Research Support)Appili (Consultant)Astellas (Consultant, Grant/Research Support)Avir (Grant/Research Support)Cidara (Consultant, Grant/Research Support)F2G (Consultant, Grant/Research Support)Mayne (Consultant, Grant/Research Support)Merck (Scientific Research Study Investigator)Pfizer (Advisor or Review Panel member)


Sign in / Sign up

Export Citation Format

Share Document