Many-Body Algebraic Theory

Author(s):  
F. Iachello ◽  
R. D. Levine

For molecules with many atoms, the simultaneous treatment of rotations and vibrations in terms of vector coordinates r1, r2, r3, . . . , quantized through the algebra . . .G ≡ U1(4) ⊗ U2(4) ⊗ U3(4). . . . . . .(6.1). . . becomes very cumbersome. Each time a U(4) algebra is added one must go through the recoupling procedure using Racah algebra, which, although feasible, is in practice very time consuming. An alternative treatment, which can be carried out for molecules with any number of atoms, is that of separating vibrations and rotations as already discussed in Sections 4.2-4.5 for triatomic molecules. For nonlinear molecules, there are three rotational degrees of freedom, described by the Euler angles α, β, γ of Figure 3.1, and thus there remain 3n − 6 independent vibrational degrees of freedom, where n is the number of atoms in the molecule. For linear molecules, there are two rotational degrees of freedom, described by the angles α, β, and thus there remain 3n − 5 independent vibrational degrees of freedom, some of which (the bending vibrations) are doubly degenerate. In this alternative treatment, the algebraic theory of polyatomic molecules consists in the separate quantization of rotations and vibrations. Each bond coordinate is then a scalar, and the corresponding algebra is that of U(2). In polyatomic molecules, the geometric symmetry of the molecule also plays a very important role. For example, the benzene molecule, which is the example we discuss in this book has the point group symmetry D6h. A consequence of the symmetry of the molecule is that states must transform according to representations of the appropriate symmetry group. In terms of coordinates, this implies that one must form internal symmetry coordinates. These are linear combinations of the internal coordinates.

1992 ◽  
Vol 59 (2S) ◽  
pp. S224-S229 ◽  
Author(s):  
Warren N. White ◽  
Srinivasan Venkatasubramanian ◽  
P. Michael Lynch ◽  
Chi-Lung D. Huang

Equations of motion of a thin, stranded elastic cable with an eccentric, attached mass and subject to aerodynamic loading are derived using Hamilton’s principle. Coupling between the translational and rotational degrees of freedom owing to inertia, elasticity, and stranded geometry are considered. By invoking simplifying assumptions, the equations of motion are reduced to those obtained previously by other researchers.


1975 ◽  
Vol 53 (7) ◽  
pp. 707-722 ◽  
Author(s):  
B. C. Sanctuary ◽  
R. F. Snider

Nuclear magnetic relaxation of polyatomic gases is discussed in terms of a Boltzmann equation. Weak intramolecular coupling is used to obtain formal expressions for the spin relaxation times and the chemical shift. In particular, restrictions arising from spin symmetry and from molecular point group symmetry are included.In carrying out the weak coupling calculation, it is necessary to approximate the time dependence of the rotational degrees of freedom. Here this is done with the aid of the 'rotating frame approximation', that is, all polarizations in the gas rotate in phase with the spins. This approximation is discussed from several points of view, including a mathematical discussion for a particular example. Finally the rotating frame approximation is related to the memory effects of general relaxation theory.


2019 ◽  
Author(s):  
Riccardo Spezia ◽  
Hichem Dammak

<div> <div> <div> <p>In the present work we have investigated the possibility of using the Quantum Thermal Bath (QTB) method in molecular simulations of unimolecular dissociation processes. Notably, QTB is aimed in introducing quantum nuclear effects with a com- putational time which is basically the same as in newtonian simulations. At this end we have considered the model fragmentation of CH4 for which an analytical function is present in the literature. Moreover, based on the same model a microcanonical algorithm which monitor zero-point energy of products, and eventually modifies tra- jectories, was recently proposed. We have thus compared classical and quantum rate constant with these different models. QTB seems to correctly reproduce some quantum features, in particular the difference between classical and quantum activation energies, making it a promising method to study unimolecular fragmentation of much complex systems with molecular simulations. The role of QTB thermostat on rotational degrees of freedom is also analyzed and discussed. </p> </div> </div> </div>


2013 ◽  
Vol 117 (13) ◽  
pp. 6800-6806 ◽  
Author(s):  
M. Jafary-Zadeh ◽  
C. D. Reddy ◽  
Yong-Wei Zhang

2014 ◽  
Vol 687-691 ◽  
pp. 610-615 ◽  
Author(s):  
Hui Liu ◽  
Li Wen Guan

High-dynamic flight simulator (HDFS), using a centrifuge as its motion base, is a machine utilized for simulating the acceleration environment associated with modern advanced tactical aircrafts. This paper models the HDFS as a robotic system with three rotational degrees of freedom. The forward and inverse dynamic formulations are carried out by the recursive Newton-Euler approach. The driving torques acting on the joints are determined on the basis of the inverse dynamic formulation. The formulation has been implemented in two numerical simulation examples, which are used for calculating the maximum torques of actuators and simulating the time-histories of kinematic and dynamic parameters of pure trapezoid Gz-load command profiles, respectively. The simulation results can be applied to the design of the control system. The dynamic modeling approach presented in this paper can also be generalized to some similar devices.


1986 ◽  
Vol 30 (03) ◽  
pp. 177-185
Author(s):  
Michael M. Bernitsas ◽  
John E. Kokarakis

A nonlinear model for the dynamic behavior of tubular beams such as marine risers, pipelines, legs of tension leg platforms, and drill strings is developed. The formulation includes three translational degrees of freedom of the riser cross section and three rotational degrees of freedom for shear and torsion. Nonlinear constitutive equations for cross sections of unequal principal stiffnesses and extensible material are derived. Initial structural imperfections which are inherent in long risers are modeled in the form of initial curvature and geometric torsion which do not induce strains. The inertia forces due to the motion of the riser and internal fluid motions are formulated. The external hydrodynamic and hydrostatic forces are integrated on the riser surface as pressure and traction forces. The model is a comprehensive consistent nonlinear formulation of the riser dynamics and can be used for evaluation of the significance of nonlinear effects.


Author(s):  
M.A. Bubenchikov ◽  
◽  
A.M. Bubenchikov ◽  
D.V. Mamontov ◽  
◽  
...  

The aim of this work is to apply classical mechanics to a description of the dynamic state of C20@C80 diamond complex. Endohedral rotations of fullerenes are of great interest due to the ability of the materials created on the basis of onion complexes to accumulate energy at rotational degrees of freedom. For such systems, a concept of temperature is not specified. In this paper, a closed description of the rotation of large molecules arranged in diamond shells is obtained in the framework of the classical approach. This description is used for C20@C80 diamond complex. Two different problems of molecular dynamics, distinguished by a fixing method for an outer shell of the considered bimolecular complex, are solved. In all the cases, the fullerene rotation frequency is calculated. Since a class of possible motions for a single carbon body (molecule) consists of rotations and translational displacements, the paper presents the equations determining each of these groups of motions. Dynamic equations for rotational motions of molecules are obtained employing the moment of momentum theorem for relative motions of the system near the fullerenes’ centers of mass. These equations specify the operation of the complex as a molecular pendulum. The equations of motion of the fullerenes’ centers of mass determine vibrations in the system, i.e. the operation of the complex as a molecular oscillator.


Sign in / Sign up

Export Citation Format

Share Document