symmetry coordinates
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 0)

H-INDEX

16
(FIVE YEARS 0)

2017 ◽  
Vol 6 (3) ◽  
pp. 60-70 ◽  
Author(s):  
Aziz Aboulmouhajir ◽  
SAID Mouatarif ◽  
Mohiéeddine Hachim ◽  
Naoual El Hamdani ◽  
Mostafa Chhiba

The 2,3-dimethyl hexane conformational isomerism has been investigated in detail, based on HF, Post-HF and DFT calculations at different basis set. The effect of size of basis, ZPE, thermal contributions, electronic correlation and optimization methods on the conformational stability was discussed. The rotational barriers from the most stable conformer to the lowest energy secondary conformers and their correspondent inversion barriers at both HF and MP2 methods using 6-31G* basis set have also been approached. A normal mode calculation of the most and less-stable conformers using a scaled ab initio force field in terms of non-redundant local symmetry coordinates have been made to elucidate the conformational dependence of the vibrational spectra.


Author(s):  
Joseph A. Beck ◽  
Jeffrey M. Brown ◽  
Alexander A. Kaszynski ◽  
Joseph C. Slater ◽  
Charles J. Cross

The geometric mistuning problem is investigated for dual flow-path integrally bladed rotors (DFIBRs) by outlining two methods that explicitly account for blade geometry surface deviations. The methods result in reduced-order models (ROMs) that are a reduced form of a parent Craig–Bampton component mode synthesis (CB-CMS) model. This is accomplished by performing a secondary modal analysis on different degrees of freedom (DOF) of the parent model. The DFIBR is formulated in cyclic symmetry coordinates with a tuned disk and ring and blades with small geometric deviations. The first method performs an eigen-analysis on the constraint DOF that provides a truncated set of interface modes, while the second method includes the disk and ring fixed interface normal mode in the eigen-analysis to yield a truncated set of ancillary modes. Utilization of tuned modes have the benefit of being solved in cyclic symmetry coordinates and only need to be calculated once, which offers significant computational savings for subsequent mistuning studies. Each geometric mistuning method relies upon the use of geometrically mistuned blade modes in the component mode framework to provide an accurate ROM. Forced response results are compared to both the full finite element model (FEM) solutions and a traditional frequency-based approach outlined in a previous effort. It is shown that the models provide highly accurate results with a significant reduction in solution time compared to the full FEM and parent ROM.


2015 ◽  
Vol 82 (1) ◽  
pp. 46-52
Author(s):  
G. A. Pitsevich ◽  
A. E. Malevich ◽  
E. U. Sleptsov ◽  
V. V. Sapeshko

2010 ◽  
Vol 09 (02) ◽  
pp. 511-529 ◽  
Author(s):  
WOLFGANG FÖRNER ◽  
HASSAN M. BADAWI

Our interest in conjugation effects in substituted phenyl compounds has turned our attention to the highly reactive compounds phenyl ketene, azide, and isocyanate, which due to their reactivity are of utmost importance in organic synthesis. We performed local density functional theory (DFT) calculations using a 6-311G** basis set to calculate the structures and potential functions of the internal rotation. Further for the minimum structures we computed the vibrational infrared and Raman spectra of the three molecules. In order to confirm that DFT works rather well in these systems we performed the geometry optimizations also using ab initio Moeller–Plesset perturbation theory of second order (MP2) in the same basis set. As expected there exist just two minimum structures for each of the molecules which both correspond to planar structures and are identical due to the symmetry of the phenyl ring. The transitions states (TS) of the internal rotations are the perpendicular ones. We expect conjugation to play no major role in these molecules since extensive conjugation effects would imply a large reduction of the aromatic character of the phenyl ring which in turn would greatly destabilize the systems. However, although the rotational barriers appear to be rather small in these systems conjugation must play at least some role in stabilizing the planar ground state. As detailed later, the relative heights of the rotational barriers can all be explained naturally. Experimental vibrational spectra could be obtained only for phenyl isocyanate and azide, but not for the ketene because of the high reactivity of this molecule. Since in the former cases the calculated spectra agree fairly well with the measured ones, we present those of the other molecule as theoretical prediction, which could be useful to detect spectroscopically in a reaction mixture residual reactant. On the basis of potential energy distribution (PED) calculations we present a complete assignment of the vibrational lines to symmetry coordinates, where, for example, ring breathing must show up with rather large intensities in the Raman spectra of the molecules.


2008 ◽  
Vol 73 (6-7) ◽  
pp. 831-861 ◽  
Author(s):  
Wolfgang Förner ◽  
Hassan M. Badawi

The structure and conformational stability of dichloro(vinyl)phosphine and dichloro(phenyl)- phosphine oxides and sulfides were investigated using calculations at the DFT/6-311G** and ab initio ones at the MP2/6-311G** level. We know from our previous results that the addition of diffuse functions to a valence triple zeta basis with polarization functions might lead to an unbalanced basis, which performs even worse than the smaller basis without diffuse functions, as it is the case for the 6-311++G** basis set in the Gaussian program. For large energy differences between conformers, DFT works very well, in some cases even better than MP3 or MP4. The vinyl derivatives were predicted to exist in a cis/gauche conformational equilibrium with cis (the PX bond, X being oxygen or sulfur eclipses the vinyl groups) being the predominant conformer at ambient temperature. In the phenyl case case the two planar forms are equivalent minima. The asymmetric potential function for the internal rotation was determined for each of the molecules. The vibrational frequencies were computed and the spectra, where possible, were compared with the experimental ones. Normal coordinate calculations were carried out and potential energy distributions were calculated for the molecules in the cis and gauche conformations (in the vinyl case, planar one for phenyl), providing a complete assignment of the vibrational lines to symmetry coordinates in the molecules. From our results and their analysis we conclude, in agreement with literature results based on localized orbitals, that conjugation effects are absent - or at least negligible - as compared with electrostatic ones in determining the structures of the stable conformers in both the vinyl and the phenyl derivatives. The P-O bond should be a highly polarized triple bond, as confirmed by analysis of Mulliken populations. The polarization turned out to be much less in the sufides due to the much smaller electronegativity of sulfur as compared with oxygen.


2004 ◽  
Vol 2 (3) ◽  
pp. 456-479 ◽  
Author(s):  
Ajit Virdi ◽  
V. Gupta ◽  
Archna Sharma

AbstractA systematic quantum mechanical study of the possible conformations, their relative stabilities, vibrational and electronic spectra and thermodynamic parameters of methyl-3-methoxy-2-propenoate has been reported for the electronic ground (S0) and first excited (S1) states using time-dependent and time-independent Density Functional Theory (DFT) and RHF methods in extended basis sets. Detailed studies have been restricted to the E-isomer, which is found to be substantially more stable than the Z-isomer. Four possible conformers c′Cc, c′Tc, t′Cc, t′Tc, of which the first two are most stable, have been identified in the S0 and S1 states. Electronic excitation to S1 state is accompanied with a reversal in the relative stability of the c′Cc and c′Tc conformers and a substantial reduction in the rotational barrier between them, as compared with the S0 state. Optimized geometries of these conformers in the S0 and S1 states are being reported. Based on suitably scaled RHF/6-31G** and DFT/6-311G** calculations, assignments have been provided to the fundamental vibrational bands of both these conformers in terms of frequency, form and intensity of vibrations and potential energy distribution across the symmetry coordinates in the S0 state. A complete interpretation of the electronic spectra of the conformers has been provided.


2004 ◽  
Vol 82 (6) ◽  
pp. 951-963 ◽  
Author(s):  
Hajime Torii ◽  
Yuko Ueno ◽  
Akira Sakamoto ◽  
Mitsuo Tasumi

Vibrational analysis is carried out for the radical anions of naphthalene-h8 and -d8. Their infrared (IR) spectra are observed in tetrahydrofuran by using a cell designed for IR measurements of unstable species. The vibrational force field and the IR intensities are calculated by the ab initio molecular orbital and density functional methods at various theoretical levels. As found in the cases of the radical cations of many polycyclic aromatic hydrocarbons (PAHs), a few strong IR bands with intensities of the order of 102 km mol–1 are observed in the 1700–900 cm–1 region. These observed spectral features are well reproduced by the calculations at the CASSCF (complete active space self-consistent field) and B3LYP (Becke's three-parameter hybrid method using the Lee–Yang–Parr correlation functional) levels. The calculation at the B3LYP level gives a better fit between the observed and calculated absolute IR intensities. Normal modes and the origin of the strong IR intensities characteristic of the radical anions are discussed in terms of molecular symmetry coordinates and the dipole derivatives based on these coordinates. It is found that the IR intensities of the b2u modes below 2000 cm–1 are dominated by the contribution from one molecular symmetry coordinate, in which the C—C bonds in one ring stretch while those in the other ring shrink. The mechanism that gives rise to the strong IR intensity for this vibration is discussed by examining the changes in the electronic structure induced by this vibration.Key words: vibrational spectra, electron–vibration interaction, naphthalene, radical anion.


Sign in / Sign up

Export Citation Format

Share Document