Proton- and ion-transfer reactions

Author(s):  
Wolfgang Schmickler

We consider the transfer of an ion or proton from the solution to the surface of a metal electrode; often this is accompanied by a simultaneous discharge of the transferring particle, such as by a fast electron transfer. The particle on the surface may be an adsorbate as in the reaction: . . .Cl - (sol) ⇋ Clad + e- (metal) . . . (9.1) In this case the discharge can be partial; that is, the adsorbate can carry a partial charge, as discussed in Chapter 4. Alternatively the particle can be incorporated into the electrode as in the deposition of a metal ion on an electrode of the same composition, or in the formation of an alloy. An example of the latter is the formation of an amalgam such as: . . . Zn2++2e- ⇋ Zn(Hg) . . . (9.2) The reverse process is the transfer of a particle from the electrode surface to the solution; often the particle on the surface is uncharged or partially charged, and is ionized during the transfer. Ion- and proton-transfer reactions are almost always preceded or followed by other reaction steps. We first consider only the chargetransfer step itself. Ions and protons are much heavier than electrons. While electrons can easily tunnel through layers of solution 5 to 10 Å thick, protons can tunnel only over short distances, up to about 0.5 Å, and ions do not tunnel at all at room temperature. The transfer of an ion from the solution to a metal surface can be viewed as the breaking up of the solvation cage and subsequent deposition, the reverse process as the jumping of an ion from the surface into a preformed favorable solvent configuration. In simple cases the transfer of an ion obeys a slightly modified form of the Butler-Volmer equation. Consider the transfer of an ion from the solution to the electrode. As the ion approaches the electrode surface, it loses a part of its solvation sphere, and it displaces solvent molecules from the surface; consequently its Gibbs energy increases at first.

1999 ◽  
Vol 64 (4) ◽  
pp. 585-594 ◽  
Author(s):  
Barbara Marczewska

The acceleration effect of p-toluidine on the electroreduction of Zn(II) on the mercury electrode surface in binary mixtures water-methanol and water-dimethylformamide is discussed. The obtained apparent and true forward rate constants of Zn(II) reduction indicate that the rate constant of the first electron transfer increases in the presence of p-toluidine. The acceleration effect may probably be accounted for by the concept of the formation on the mercury electrode an activated complex, presumably composed of p-toluidine and solvent molecules.


2020 ◽  
Vol 410 ◽  
pp. 213219 ◽  
Author(s):  
Tarali Devi ◽  
Yong-Min Lee ◽  
Wonwoo Nam ◽  
Shunichi Fukuzumi

2003 ◽  
Vol 75 (5) ◽  
pp. 577-587 ◽  
Author(s):  
Shunichi Fukuzumi

Catalytic control of electron-transfer processes is described for a number of photoinduced and thermal electron-transfer reactions, including back electron transfer in the charge-separated state of artificial photosynthetic compounds. The intermolecular and intramolecular electron-transfer processes are accelerated by complexation of radical anions, produced in the electron transfer, with metal ions that act as Lewis acids. Quantitative measures to determine the Lewis acidity of a variety of metal ions are given in relation with the promoting effects of metal ions in the electron-transfer reactions. The mechanistic viability of metal ion catalysis in electron-transfer reactions is demonstrated by a variety of examples of both thermal and photochemical reactions that involve metal ion-promoted electron-transfer processes as the rate-determining steps, which are made possible to proceed by complexation of radical anions with metal ions.


Sign in / Sign up

Export Citation Format

Share Document