Random Processes and Fields

Author(s):  
Ilya Polyak

In this chapter, the nonparametric methods of estimating the spectra and correlation functions of stationary processes and homogeneous fields are considered. It is assumed that the principal concepts and definitions of the corresponding theory are known (see Anderson, 1971; Box and Jenkins, 1976; Jenkins and Watts, 1968; Kendall and Stuart, 1967; Loeve, 1960; Parzen, 1966; Yaglom, 1986); therefore, only questions connected with the construction of numerical algorithms are studied. The basic results ranged from univariate process to multidimensional field are presented in Tables 3.1 and 3.2. These formulas make it possible to compare and trace the formal character of developing estimation procedures when the dimensionality is increasing. The schemes in these tables, as well as the formulas in the previous chapters, can be used for software development without any rearrangement. In part, this approach presents the application of the methods of Chapters 1 and 2 in evaluating random function characteristics. Of course, the final identification of the algorithm parameters (for example, the spectral window widths) can be made only through trial and error and by taking into account the character of the problem under study, that is, the physical properties of the processes and fields observed. The last section of this chapter presents results of the application of these methods to the analysis of some climatological fields. Here the basic results of the univariate spectral analysis are briefly discussed in order to develop algorithms for a multidimensional case by analogous reasoning. The complete description of the estimation procedures of the spectral and correlation analysis for univariate stationary process can be found, for example, in Jenkins and Watts, 1968.

Author(s):  
Om P. Agrawal ◽  
Shantaram S. Pai

Abstract Random processes play a significant role in stochastic analysis of mechanical systems, structures, fluid mechanics, and other engineering systems. In this paper, a numerical method for series representation of random processes, with specified mean and correlation functions, in wavelet bases is presented. In this method, the Karhunen-Loeve expansion approach is used to represent a process as a linear sum of orthonormal eigenfunctions with uncorrelated random coefficients. The correlation and the eigenfunctions are approximated as truncated linear sums of compactly supported orthogonal wavelets. The eigenfunctions satisfy an integral eigenvalue problem. Using the above approximations, the integral eigenvalue problem is converted to a matrix (finite dimensional) eigenvalue problem. Numerical algorithms are discussed to compute one- and two-dimensional wavelet transforms of certain functions, and the resulting equations are solved to obtain the eigenvalues and the eigenfunctions. The scheme provides an improvement over other existing schemes. Two examples are considered to show the feasibility and effectiveness of this method. Numerical studies show that the results obtained using this method compare well with analytical techniques.


1991 ◽  
Vol 28 (01) ◽  
pp. 17-32 ◽  
Author(s):  
O. V. Seleznjev

We consider the limit distribution of maxima and point processes, connected with crossings of an increasing level, for a sequence of Gaussian stationary processes. As an application we investigate the limit distribution of the error of approximation of Gaussian stationary periodic processes by random trigonometric polynomials in the uniform metric.


1991 ◽  
Vol 28 (1) ◽  
pp. 17-32 ◽  
Author(s):  
O. V. Seleznjev

We consider the limit distribution of maxima and point processes, connected with crossings of an increasing level, for a sequence of Gaussian stationary processes. As an application we investigate the limit distribution of the error of approximation of Gaussian stationary periodic processes by random trigonometric polynomials in the uniform metric.


Author(s):  
Mohamed Khalil ◽  
Roland Wüchner ◽  
Kai-Uwe Bletzinger

Abstract Estimation of material fatigue life is an essential task in many engineering fields. When non-proportional loads are applied, the methodology to estimate fatigue life grows in complexity. Many methods have been proposed to solve this problem both in time and frequency domains. The former tends to give more accurate results, while the latter seems to be more computationally favorable. Until now, the focus of frequency-based methods has been limited to signals assumed to follow a stationary statistic process. This work proposes a generalization to the existing methods to accommodate non-stationary processes as well. A sensitivity analysis is conducted on the influence of the formulation’s hyper-parameters, followed by a numerical investigation on different signals and various materials to assert the robustness of the method.


1995 ◽  
Vol 27 (2) ◽  
pp. 306-325 ◽  
Author(s):  
François Baccelli ◽  
Maurice Klein ◽  
Sergei Zuyev

We use the fact that the Palm measure of a stationary random measure is invariant to phase space change to generalize the light traffic formula initially obtained for stationary processes on a line to general spaces. This formula gives a first-order expansion for the expectation of a functional of the random measure when its intensity vanishes. This generalization leads to new algorithms for estimating gradients of functionals of geometrical random processes.


2014 ◽  
Vol 57 (9) ◽  
pp. 403-417
Author(s):  
I. N. Yavorskyj ◽  
R. Yuzefovych ◽  
I. Y. Matsko ◽  
V. Shevchik

2019 ◽  
pp. 28-34
Author(s):  
O. V. Goriunov ◽  
S. V. Slovtsov

Analysis of many dynamic tasks arising in engineering applications is associated with the construction of spectral characteristics. However, the application of spectral analysis to random oscillations, which in most cases describe real processes (technical, technological, etc.), has a number of features and limitations associated, in particular, with the anconvergence of the Fourier transform. The substantiated metrological evaluation of the spectra associated with the reliability of the applied results is complicated by the absence of a rigorous mathematical model of a random process. The above remarks were solved on the basis of application of Kotelnikov's theorem at decomposition of a random process on known eigenfunctions. The obtained decomposition allowed us to obtain a number of results in the field of correlation and spectral analysis of random processes: the stability of the ACF and the relationship with the statistical characteristics of the implementation is proved, the orthogonal decomposition of the random process in the form of a continuous function is presented, which allows us to consider the evaluation and analyze the characteristics of the realizations without the use of a fast Fourier transform; the natural relationship between ACF and spectral density for a time-limited signal is shown, and the symmetric form of recording the signal spectrum is justified.


Sign in / Sign up

Export Citation Format

Share Document