Ligand Substitution Reactions

Author(s):  
Robert B. Jordan

In ligand substitution reactions, one or more ligands around a metal ion are replaced by other ligands. In many ways, all inorganic reactions can be classified as either substitution or oxidation-reduction reactions, so that substitution reactions represent a major type of inorganic process. Some examples of substitution reactions follow: The operational approach was first expounded in 1965 in a monograph by Langford and Gray. It is an attempt to classify reaction mechanisms in relation to the type of information that kinetic studies of various types can provide. It delineates what can be said about the mechanism on the basis of the observations from certain types of experiments. The mechanism is classified by two properties, its stoichiometric character and its intimate character. The Stoichiometric mechanism can be determined from the kinetic behavior of one system. The classifications are as follows: 1. Dissociative (D): an intermediate of lower coordination number than the reactant can be identified. 2. Associative (A): an intermediate of larger coordination number than the reactant can be identified. 3. Interchange (I): no detectable intermediate can be found. The intimate mechanism can be determined from a series of experiments in which the nature of the reactants is changed in a systematic way. The classifications are as follows: 1. Dissociative activation (d): the reaction rate is more sensitive to changes in the leaving group. 2. Associative activation (a): the reaction rate is more sensitive to changes in the entering group. This terminology has largely replaced the SN1, SN2 and so on type of nomenclature that is still used in physical organic chemistry. These terminologies are compared and further explained as follows: Dissociative [D = SN1 (limiting)]: there is definite evidence of an intermediate of reduced coordination number. The bond between the metal and the leaving group has been completely broken in the transition state without any bond making to the entering group. Dissociative interchange (1d= SN1): there is no definite evidence of an intermediate. In the transition state, there is a large degree of bond breaking to the leaving group and a small amount of bond making to the entering group.

2019 ◽  
Vol 48 (18) ◽  
pp. 5987-6002 ◽  
Author(s):  
A. Paden King ◽  
Hendryck A. Gellineau ◽  
Samantha N. MacMillan ◽  
Justin J. Wilson

A subset of fluorinated Co(iii) Schiff base complexes was synthesized, and their structural, ligand exchange, and anticancer properties were investigated.


2017 ◽  
Vol 46 (41) ◽  
pp. 14256-14263 ◽  
Author(s):  
Julie Urgiles ◽  
Sarah R. Nathan ◽  
Samantha N. MacMillan ◽  
Justin J. Wilson

Nitrido-bridged ruthenium complexes are synthesized via ligand substitution reactions and evaluated for mitochondrial calcium uptake inhibition.


1980 ◽  
Vol 19 (7) ◽  
pp. 2162-2165 ◽  
Author(s):  
Jens Martinsen ◽  
Michael Miller ◽  
Daria Trojan ◽  
D. A. Sweigart

Sign in / Sign up

Export Citation Format

Share Document