Machine Learning for Signal Processing

Author(s):  
Max A. Little

Digital signal processing (DSP) is one of the ‘foundational’ engineering topics of the modern world, without which technologies such the mobile phone, television, CD and MP3 players, WiFi and radar, would not be possible. A relative newcomer by comparison, statistical machine learning is the theoretical backbone of exciting technologies such as automatic techniques for car registration plate recognition, speech recognition, stock market prediction, defect detection on assembly lines, robot guidance and autonomous car navigation. Statistical machine learning exploits the analogy between intelligent information processing in biological brains and sophisticated statistical modelling and inference. DSP and statistical machine learning are of such wide importance to the knowledge economy that both have undergone rapid changes and seen radical improvements in scope and applicability. Both make use of key topics in applied mathematics such as probability and statistics, algebra, calculus, graphs and networks. Intimate formal links between the two subjects exist and because of this many overlaps exist between the two subjects that can be exploited to produce new DSP tools of surprising utility, highly suited to the contemporary world of pervasive digital sensors and high-powered and yet cheap, computing hardware. This book gives a solid mathematical foundation to, and details the key concepts and algorithms in, this important topic.

Author(s):  
Max A. Little

Statistical machine learning and signal processing are topics in applied mathematics, which are based upon many abstract mathematical concepts. Defining these concepts clearly is the most important first step in this book. The purpose of this chapter is to introduce these foundational mathematical concepts. It also justifies the statement that much of the art of statistical machine learning as applied to signal processing, lies in the choice of convenient mathematical models that happen to be useful in practice. Convenient in this context means that the algebraic consequences of the choice of mathematical modeling assumptions are in some sense manageable. The seeds of this manageability are the elementary mathematical concepts upon which the subject is built.


Author(s):  
Max A. Little

The modern view of statistical machine learning and signal processing is that the central task is one of finding good probabilistic models for the joint distribution over all the variables in the problem. We can then make `queries' of this model, also known as inferences, to determine optimal parameter values or signals. Hence, the importance of statistical methods to this book cannot be overstated. This chapter is an in-depth exploration of what this probabilistic modeling entails, the origins of the concepts involved, how to perform inferences and how to test the quality of a model produced this way.


2019 ◽  
Author(s):  
Tiago Tavares

This hands-on workshop comprises essential techniques for digital signal processing and machine learning. Participants will use the Python libraries librosa and scikit-learn as support to build an automatic audio classification system. The workshop will use explorations in toy problems to approach theoretical aspects. Later, it will discuss practical issues for building a scientific applications in the field.


Author(s):  
Max A. Little

This chapter provides an overview of generating samples from random variables with a given (joint) distribution, and using these samples to find quantities of interest from digital signals. This task plays a fundamental role in many problems in statistical machine learning and signal processing. For example, effectively simulating the behaviour of the statistical model offers a viable alternative to optimization problems arising from some models for signals with large numbers of variables.


Sign in / Sign up

Export Citation Format

Share Document