Linear-Gaussian systems and signal processing

Author(s):  
Max A. Little

Linear systems theory, based on the mathematics of vector spaces, is the backbone of all “classical” DSP and a large part of statistical machine learning. The basic idea -- that linear algebra applied to a signal can of substantial practical value -- has counterparts in many areas of science and technology. In other areas of science and engineering, linear algebra is often justified by the fact that it is often an excellent model for real-world systems. For example, in acoustics the theory of (linear) wave propagation emerges from the concept of linearization of small pressure disturbances about the equilibrium pressure in classical fluid dynamics. Similarly, the theory of electromagnetic waves is also linear. Except when a signal emerges from a justifiably linear system, in DSP and machine learning we do not have any particular correspondence to reality to back up the choice of linearity. However, the mathematics of vector spaces, particularly when applied to systems which are time-invariant and jointly Gaussian, is highly tractable, elegant and immensely useful.

Author(s):  
Max A. Little

Linear, time-invariant (LTI) Gaussian DSP, has substantial mathematical conveniences that make it valuable in practical DSP applications and machine learning. When the signal really is generated by such an LTI-Gaussian model then this kind of processing is optimal from a statistical point of view. However, there are substantial limitations to the use of these techniques when we cannot guarantee that the assumptions of linearity, time-invariance and Gaussianity hold. In particular, signals that exhibit jumps or significant non-Gaussian outliers cause substantial adverse effects such as Gibb's phenomena in LTI filter outputs, and nonstationary signals cannot be compactly represented in the Fourier domain. In practice, many real signals show such phenomena to a greater or lesser degree, so it is important to have a `toolkit' of DSP methods that are effective in many situations. This chapter is dedicated to exploring the use of the statistical machine learning concepts in DSP.


1995 ◽  
Vol 17 (4) ◽  
pp. 6-12
Author(s):  
Nguyen Tien Dat ◽  
Dinh Van Manh ◽  
Nguyen Minh Son

A mathematical model on linear wave propagation toward shore is chosen and corresponding software is built. The wave transformation outside and inside the surf zone is considered including the diffraction effect. The model is tested by laboratory and field data and gave reasonables results.


Sign in / Sign up

Export Citation Format

Share Document